一:离散型随机变量的期望
直接放公式
例题:求离散型随机变量的期望
连续型随机变量的数学期望
先上公式
1°一维
令Y=g(x)
举个例子
2°二维
例题:求连续性随机变量的期望
例题2:二维连续随机变量的期望
期望的性质
①设C为常数,E(C)=C
②E(CX)=CE(X)
③E(k1X+-k2Y)=k1E(X)+-k2E(Y)
④如果X和Y相互独立,E(XY)=EX*EY
二:方差
公式: DX=E(X-EX)²
离散型方差公式
连续性方差公式
方差常用公式
方差的性质
1°设C为常数,D(C)=0
2°D(CX)=C²DX
3°D(X+C)=DX
例题:求泊松分布期望和方差
例题:方差性质
D(Y)=E(Y²)-(EY)²
例题2:求方差
三:协方差
公式:
cov(X,Y)=E(XY)-E(X)E(Y)
协方差的性质
1°cov(X,Y)=cov(Y,X)
2°cov(X,X)=DX
3°cov(C,X)=0
4°cov(aX,bY)= abcov(X,Y)
5°cov(k1X1+k2X2,Y)=k1cov(X1,Y)+k2cov(X2,Y)
6°D(X+-Y)=DX+DY+-cov(X,Y)
7°如果X与Y独立,那么cov(X,Y)=0
例题:用协方差公式求协方差
例题:连续型求协方差
四:相关系数
公式:ρxy = cov(X,Y) / 根号DX+根号DY
推导公式,cov(X,Y)= ρXY*(根号DX+根号DY)
我们新得到了一种求协方差的方法
我们还有一些求协方差的方法
1°cov(X,Y)=E(XY)-EXEY
2°cov(X,Y)= D(X+Y)-DX-DY
求相关系数
cov(X,Y)= E(XY)-EX*EY = 0
ρxy=0
相关系数的性质
1°|ρ|<=1
2°如果|ρ|=1 《=》 P{Y=aX+b} = 1
当a>0时,ρ=1,
a<0,ρ=-1
例题 相关系数的性质
n=X+Y
P{Y=n-X}=1
由我们的性质,Y=aX+b a<0
ρ=-1
故选A
注:如果X和Y相互独立,那么它们一定不相关,如果X和Y不相关 不一定相互独立