概率论期末复习第四章 期望与方差/协方差/相关系数

一:离散型随机变量的期望

直接放公式

例题:求离散型随机变量的期望

连续型随机变量的数学期望

先上公式

1°一维

令Y=g(x)

举个例子

2°二维

例题:求连续性随机变量的期望

例题2:二维连续随机变量的期望

期望的性质

①设C为常数,E(C)=C

②E(CX)=CE(X)

③E(k1X+-k2Y)=k1E(X)+-k2E(Y)

④如果X和Y相互独立,E(XY)=EX*EY

二:方差

公式: DX=E(X-EX)²

离散型方差公式

连续性方差公式

方差常用公式

方差的性质

1°设C为常数,D(C)=0

2°D(CX)=C²DX

3°D(X+C)=DX

例题:求泊松分布期望和方差

例题:方差性质

D(Y)=E(Y²)-(EY)²

例题2:求方差

三:协方差

公式:

cov(X,Y)=E(XY)-E(X)E(Y)

协方差的性质

1°cov(X,Y)=cov(Y,X)

2°cov(X,X)=DX

3°cov(C,X)=0

4°cov(aX,bY)= abcov(X,Y)

5°cov(k1X1+k2X2,Y)=k1cov(X1,Y)+k2cov(X2,Y)

6°D(X+-Y)=DX+DY+-cov(X,Y)

7°如果X与Y独立,那么cov(X,Y)=0

例题:用协方差公式求协方差

例题:连续型求协方差

四:相关系数

公式:ρxy = cov(X,Y) / 根号DX+根号DY

推导公式,cov(X,Y)= ρXY*(根号DX+根号DY)

我们新得到了一种求协方差的方法

我们还有一些求协方差的方法

1°cov(X,Y)=E(XY)-EXEY

2°cov(X,Y)= D(X+Y)-DX-DY

求相关系数

cov(X,Y)= E(XY)-EX*EY = 0

ρxy=0

相关系数的性质

1°|ρ|<=1

2°如果|ρ|=1 《=》 P{Y=aX+b} = 1

当a>0时,ρ=1,

a<0,ρ=-1

例题 相关系数的性质

n=X+Y

P{Y=n-X}=1 

由我们的性质,Y=aX+b a<0

ρ=-1

故选A

注:如果X和Y相互独立,那么它们一定不相关,如果X和Y不相关 不一定相互独立

概率论中的相关系数是用来衡量两个随机变量线性关系强度的一个数值指标。通常所指的相关系数是皮尔逊积矩相关系数(Pearson product-moment correlation coefficient),它反映了两组测量值之间的线性关联程度。 ### 定义 设 $(X,Y)$ 是二维随机向量,若 $\text{Var}(X)>0,\ \text{Var}(Y)>0$, 则定义 $X$ $Y$ 的相关系数为: $$\rho_{XY}=\frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X)\cdot\text{Var}(Y)}}.$$ 其中, - $\text{Cov}(X,Y)$ 表示协方差; - $\text{Var}(X)$ $\text{Var}(Y)$ 分别表示 X Y 的方差。 当 $\rho_{XY}=1$ 时表示完全正线性相关;$\rho_{XY}=-1$ 时表示完全负线性相关;而 $\rho_{XY}=0$ 时则意味着没有线性相关性(但并不排除存在非线性的其他形式的关系)。 ### 计算方法 为了计算给定样本集的相关系数,可以采用如下步骤: 使用样本估计协方差标准差来近似理论上的相关系数。设有 n 对观测数据点 $(x_i,y_i), i=1,...,n,$ 可以得到样本相关系数 r 如下: ```matlab % MATLAB 示例代码用于计算样本相关系数r function r = sample_correlation_coefficient(x, y) % 输入 x y 应该是相同长度的列向量 mean_x = mean(x); mean_y = mean(y); cov_xy = sum((x-mean_x).*(y-mean_y))/(length(x)-1); % 协方差 std_x = sqrt(sum((x-mean_x).^2)/(length(x)-1)); % 样本标准偏差 of x std_y = sqrt(sum((y-mean_y).^2)/(length(y)-1)); % 样本标准偏差 of y r = cov_xy / (std_x * std_y); end ``` 此段代码实现了从输入的数据集中直接计算出样本间的相关系数的功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无敌大饺子 dot

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值