【通信原理 入坑之路】—— 【理论推导】加性高斯白噪声干扰下的基带信号检测

基带信号的检测是通信系统中至关重要的一环,知道如何选取判决门限以及通信系统的误码率计算可以更好地辅助我们对通信系统进行设计和优化。下面我们从理论的角度一起推导一下:

首先,我们在本文中的推导是基于二进制的通信系统。我们假设这个系统会发送两种符号(0和1),发送0的概率是 p ( s 0 ) p(s_0) p(s0) ;发送1的概率是 p ( s 1 ) p(s_1) p(s1)。即: a n = { a 1 发 送 “ 1 " a 2 发 送 “ 0 " a_n = \begin{cases} a_1\quad 发送 “1"\\ a_2\quad 发送 “0" \end{cases} an={a11"a20"
(从上面的表达式我们可以知道现在我们用的是单极性不归零编码)

我们回顾一下基带信号成型的公式: s ( t ) = ∑ n = − ∞ + ∞ a n g T ( t − n T ) s(t) = \sum_{n=-∞}^{+∞}a_ng_T(t-nT) s(t)=n=+angT(tnT)

所以我们可以知道发送符号 “1” 的时候,在一个码元周期内就是一个方波信号;如果发发送的是符号 “0”,那么在一个码元周期内就没有信号。我们用简单的记法: s 1 ( t ) s_1(t) s1(t) s 0 ( t ) s_0(t) s0(t) 来表示不同的符号波形。即: s ( t ) = { s 1 ( t ) 发 送 符 号 “ 1 " s 2 ( t ) 发 送 符 号 “ 2 " s(t) = \begin{cases} s_1(t)\quad 发送符号 “1"\\ s_2(t)\quad 发送符号 “2"\\ \end{cases} s(t)={s1(t)1"s2(t)2"

然后我们这个 s ( t ) s(t) s(t) 信号经过加性高斯噪声的干扰,到达接收端之后的形式就是: r ( t ) = { s 1 ( t ) + n ( t ) 发 送 符 号 “ 1 ” s 2 ( t ) + n ( t ) 发 送 符 号 “ 0 ” r(t) = \begin{cases} s_1(t)+n(t)\quad 发送符号 “1”\\ s_2(t)+n(t)\quad 发送符号 “0” \end{cases} r(t)={s1(t)+n(t)1s2(t)+n(t)0
接下来因为经过了低通滤波器,匹配滤波器和均衡器之后,我们到达判决器。值得注意的是:在到达判决器之前的信号是已经经过采样的了。而采样的时间点,因为我们之前经过了匹配滤波器,而匹配滤波器的采样时刻就是在一个码元周期结束的时刻 T T T。所以对于一个二元基带传输系统,经过抽样之后得到的样值我们就可以表示成: z ( T ) = { a 1 + n ( T ) 发 送 符 号 “ 1 ” a 2 + n ( T ) 发 送 符 号 “ 0 ” z(T) = \begin{cases} a_1+n(T)\quad 发送符号 “1”\\ a_2+n(T)\quad 发送符号 “0”\\ \end{cases} z(T)={a1+n(T)1a2+n(T)0

值得注意的是,因为原本的 n ( t ) n(t) n(t) 是高斯白噪声,假设信号之前经历的那些低通滤波器等都是采用的线性滤波器,那么经过抽样处理之后的 n ( T ) n(T) n(T) 仍然是高斯噪声。 我们写一下高斯白噪声的概率密度函数: p ( n ) = 1 2 π σ e − n 2 2 σ 2 p(n) = \frac{1}{\sqrt{2\pi} σ}e^{-\frac{n^2}{2 σ^2}} p(n)=2π σ1e2σ2n2

下面我们看看 z ( T ) z(T) z(T) 在发送不同符号时的概率密度函数:当发送符号 “1”时,因为我们的 a a a是一个常数,因此常数加上高斯分布仍然满足高斯分布,只不过均值变了。因此有: p ( z ∣ s 1 ) = 1 2 π σ e − ( z − a 1 ) 2 2 σ 2 p(z|s_1) = \frac{1}{\sqrt{2\pi} σ}e^{-\frac{(z-a_1)^2}{2 σ^2}} p(zs1)=2π σ1e2σ2(za1)2

当发送符号 0 时,那很简单,就是: p ( z ∣ s 2 ) = 1 2 π σ e − ( z − a 2 ) 2 2 σ 2 p(z|s_2)=\frac{1}{\sqrt{2\pi} σ}e^{-\frac{(z-a_2)^2}{2 σ^2}} p(zs2)=2π σ1e2σ2(za2)2

下面我们把这两个概率密度函数画出来:
在这里插入图片描述

上图中的 γ 0 γ_0 γ0 就是一个判决门限,比如说如果我接收到的信号 z ( T ) = a + n ( T ) z(T) = a + n(T) z(T)=a+n(T) ,如果这个 z ( T ) > γ 0 z(T)>γ_0 z(T)>γ0 那么就被判决为 s 1 s_1 s1。那么读者已经可以发现了:这个 γ 0 γ_0 γ0 我们其实是可以任意取值的,你取在哪里都可以,但是显然不同的取值对最终判决的准确率有很大的影响。

下面我们的工作是如何把这个最合适的判决门限:首先我们来表示一下误码率 P E P_E PE P E = P ( s 1 ) ∫ − ∞ γ 0 p ( z ∣ s 1 ) d z + P ( s 2 ) ∫ γ 0 + ∞ p ( z ∣ s 2 ) d z P_E = P(s_1)\int_{-∞}^{γ_0}p(z|s_1)dz+P(s_2)\int_{γ_0}^{+∞}p(z|s_2)dz PE=P(s1)γ0p(zs1)dz+P(s2)γ0+p(zs2)dz

因为我们前面说了不同的 γ 0 γ_0 γ0 将会影响 P E P_E PE,所以我们需要找到一个 γ 0 γ_0 γ0 使得 P E P_E PE最小。那么我们就让 P E P_E PE γ 0 γ_0 γ0 计算偏导,如下: ∂ P E ∂ γ 0 = P ( s 1 ) p ( γ 0 ∣ s 1 ) − P ( s 2 ) p ( γ 0 ∣ s 2 ) = 0 \frac{\partial P_E}{\partial γ_0}=P(s_1)p(γ_0|s_1)-P(s_2)p(γ_0|s_2)=0 γ0PE=P(s1)p(γ0s1)P(s2)p(γ0s2)=0
所以有: P ( s 1 ) p ( γ 0 ∣ s 1 ) = P ( s 2 ) p ( γ 0 ∣ s 2 ) P(s_1)p(γ_0|s_1)=P(s_2)p(γ_0|s_2) P(s1)p(γ0s1)=P(s2)p(γ0s2)
我们把具体的概率密度函数带进去,得: P ( s 1 ) 1 2 π σ e − ( γ 0 − a 1 ) 2 2 σ 2 = P ( s 2 ) 1 2 π σ e − ( γ 0 − a 2 ) 2 2 σ 2 P(s_1)\frac{1}{\sqrt{2\pi} σ}e^{-\frac{(γ_0-a_1)^2}{2 σ^2}} = P(s_2)\frac{1}{\sqrt{2\pi} σ}e^{-\frac{(γ_0-a_2)^2}{2 σ^2}} P(s1)2π σ1e2σ2(γ0a1)2=P(s2)2π σ1e2σ2(γ0a2)2
即: P ( s 1 ) P ( s 2 ) = e − ( γ 0 − a 2 ) 2 2 σ 2 e − ( γ 0 − a 1 ) 2 2 σ 2 \frac{P(s_1)}{P(s_2)} = \frac{e^{-\frac{(γ_0-a_2)^2}{2 σ^2}}}{e^{-\frac{(γ_0-a_1)^2}{2 σ^2}}} P(s2)P(s1)=e2σ2(γ0a1)2e2σ2(γ0a2)2
连边同时取 l n ln ln,整理一下可以把 γ 0 γ_0 γ0 算出来了: γ 0 = σ 2 a 2 − a 1 ( l n P ( s 1 ) P ( s 2 ) + a 2 2 2 σ 2 − a 1 2 2 σ 2 ) γ_0 = \frac{σ^2}{a_2-a_1}(ln\frac{P(s_1)}{P(s_2)}+\frac{a_2^2}{2σ^2}-\frac{a_1^2}{2σ^2}) γ0=a2a1σ2(lnP(s2)P(s1)+2σ2a222σ2a12)

另外,当两个符号是先验等概的时候,有: γ 0 = a 1 + a 2 2 γ_0 = \frac{a_1+a_2}{2} γ0=2a1+a2


下面我们推导误码率公式,为了简单期间,我们就考虑两个符号先验等概的情况(先验不等概的情况完全一样,只不过门限就换了一个数罢了): P E = P ( s 1 ) ∫ − ∞ γ 0 p ( z ∣ s 1 ) d z + P ( s 2 ) ∫ γ 0 + ∞ p ( z ∣ s 2 ) d z P_E = P(s_1)\int_{-∞}^{γ_0}p(z|s_1)dz+P(s_2)\int_{γ_0}^{+∞}p(z|s_2)dz PE=P(s1)γ0p(zs1)dz+P(s2)γ0+p(zs2)dz

即: P E = 1 2 ( ∫ − ∞ a 1 + a 2 2 p ( z ∣ s 1 ) d z + ∫ a 1 + a 2 2 + ∞ p ( z ∣ s 2 ) d z ) \begin{aligned} P_E&=\frac{1}{2}(\int_{-∞}^{\frac{a_1+a_2}{2}}p(z|s_1)dz+\int_{\frac{a_1+a_2}{2}}^{+∞}p(z|s_2)dz)\\ \end{aligned} PE=21(2a1+a2p(zs1)dz+2a1+a2+p(zs2)dz)

这个式子比较复杂,而且积分又好像难以合并,这时该怎么做呢?我们回想刚刚看到的图,其实因为积分表示的就是面积,巧的是 s 0 s_0 s0 s 1 s_1 s1 错误判决的部分的面积是一样的。即: ∫ − ∞ a 1 + a 2 2 p ( z ∣ s 1 ) d z = ∫ a 1 + a 2 2 + ∞ p ( z ∣ s 2 ) d z \int_{-∞}^{\frac{a_1+a_2}{2}}p(z|s_1)dz=\int_{\frac{a_1+a_2}{2}}^{+∞}p(z|s_2)dz 2a1+a2p(zs1)dz=2a1+a2+p(zs2)dz
所以我们可以将上面的式子写成: P E = ∫ a 1 + a 2 2 + ∞ p ( z ∣ s 2 ) d z = ∫ a 1 + a 2 2 + ∞ 1 2 π σ e − ( z − a 2 ) 2 2 σ 2 d z \begin{aligned} P_E&=\int_{\frac{a_1+a_2}{2}}^{+∞}p(z|s_2)dz\\ &=\int_{\frac{a_1+a_2}{2}}^{+∞}\frac{1}{\sqrt{2\pi} σ}e^{-\frac{(z-a_2)^2}{2 σ^2}}dz \end{aligned} PE=2a1+a2+p(zs2)dz=2a1+a2+2π σ1e2σ2(za2)2dz

我们希望把误码率化成Q函数的形式,即: Q ( x ) = ∫ x + ∞ 1 2 π e − z 2 2 d z Q(x) = \int_{x}^{+∞}\frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}dz Q(x)=x+2π 1e2z2dz

所以有: P E = ∫ a 1 + a 2 2 + ∞ p ( z ∣ s 2 ) d z = ∫ a 1 + a 2 2 + ∞ 1 2 π σ e − ( z − a 2 ) 2 2 σ 2 d z = ∫ a 1 + a 2 2 + ∞ 1 2 π e − ( z − a 2 σ ) 2 2 d ( z − a 2 σ ) \begin{aligned} P_E&=\int_{\frac{a_1+a_2}{2}}^{+∞}p(z|s_2)dz\\ &=\int_{\frac{a_1+a_2}{2}}^{+∞}\frac{1}{\sqrt{2\pi} σ}e^{-\frac{(z-a_2)^2}{2 σ^2}}dz\\ &=\int_{\frac{a_1+a_2}{2}}^{+∞}\frac{1}{\sqrt{2\pi}}e^{-\frac{(\frac{z-a_2}{σ})^2}{2}}d(\frac{z-a_2}{σ}) \end{aligned} PE=2a1+a2+p(zs2)dz=2a1+a2+2π σ1e2σ2(za2)2dz=2a1+a2+2π 1e2(σza2)2d(σza2)

我们令: u = z − a 2 σ u = \frac{z-a_2}{σ} u=σza2,因此积分区间就变成了: P E = ∫ u = a 1 − a 2 2 σ + ∞ 1 2 π e − u 2 2 d u = Q ( a 1 − a 2 2 σ ) P_E = \int_{u=\frac{a_1-a_2}{2σ}}^{+∞}\frac{1}{\sqrt{2\pi}}e^{-\frac{u^2}{2}}du = Q(\frac{a_1-a_2}{2σ}) PE=u=2σa1a2+2π 1e2u2du=Q(2σa1a2)

至此,我们就成功地推导出了二进制基带系统的误码率公式以及其最佳判决门限啦。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值