前言
从这一篇开始我们依次介绍几种模拟信号调制的方法,包括其数学表达式,系统框图、解调方式、性能评价等。
一、DSB-SC的数学表示
将 m ( t ) m(t) m(t)作为已调信号 s ( t ) s(t) s(t)的复包络,我们可以得到第一种模拟调制方案——即双边带抑制载波调制。首先我们推导一下 s ( t ) s(t) s(t)的表达式:
s L ( t ) = m ( t ) = [ s ( t ) + j s ^ ( t ) ] e − j 2 π f c t s_L(t)=m(t)=\left[s(t)+j\hat{s}(t)\right]e^{-j2\pi f_ct} sL(t)=m(t)=[s(t)+js^(t)]e−j2πfct
s ( t ) = R e [ m ( t ) e j 2 π f c t ] = m ( t ) cos 2 π f c t s(t) = Re\left[m(t)e^{j2\pi f_ct}\right]=m(t)\cos2\pi f_ct s(t)=Re[m(t)ej2πfct]=m(t)cos2πfct
其中 A c , f c A_c,f_c Ac,fc分别为已调信号的幅度系数与载波频率。原信号乘上余弦信号,频域上就是将信号左右搬移到载频 f c f_c fc处。因为我们有模拟基带信号 m ( t ) m(t) m(t)为无直流分量的实信号的假设,所以我们有已调信号的频谱在载频处无冲激分量(抑制载波),并且其频谱图像分成对称的两部分,称为上下边带(双边带)。
二、DSB-SC的相干解调
通过其数学表示,我们可以很容易地得到实现的系统框图如下:
基带信号与载波信号相乘,叠加上高斯噪声后通过带通滤波器,再进行解调。这里载波信号里面的 ϕ \phi ϕ是随机相位。
接下来我们来看解调器,首先是将滤波后的信号乘上载波信号,这里载波信号的相位也必须和原来的完全一致(所以这种解调方式称为相干解调),然后再通过一个低通滤波器。从频域上分析,乘上余弦载波,原本的带通信号正负频率都有一部分被搬移到基带 M ( f ) M(f) M(f),另一部分搬移到两倍载频 M ( f + 2 f c ) , M ( f − 2 f c ) M(f+2f_c),M(f-2f_c) M(f+2f