【声传播】——球面波的反射

概述

本文整理了球面波的反射问题,核心思路使用角谱法将球面波展开成平面波,利用已知的平面波反射系数,合成反射的球面波。
本文在后面讨论了反射系数与入射角无关的情况下球面反射波的形式以及远程条件下的球面反射波形式。

角谱法展开球面波

利用二维傅里叶变换对,可以将球面波展开成平面波的组合,即角谱法。
注:这里用 e j k R R \frac{e^{jkR}}{R} RejkR的形式来表示球面波,因为水声里一般用 e j ( k x − w t ) e^{j(kx-wt)} ej(kxwt)来表示平面波。
e j k R R = ∬ A ( k x , k y ) e j ( k x x + k y y + k z z ) d k x d k y \frac{e^{jkR}}{R}=\iint A(k_x,k_y)e^{j(k_xx+k_yy+k_zz)}{ \rm dk_x d k_y} RejkR=A(kx,ky)ej(kxx+kyy+kzz)dkxdky
为了求 A ( k x , k y ) A(k_x,k_y) A(kx,ky),取 z = 0 z=0 z=0平面,此时 R = r = x 2 + y 2 R=r=\sqrt{x^2+y^2} R=r=x2+y2 ,则可将上式化简得到:
e j k r r = ∬ A ( k x , k y ) e j ( k x x + k y y ) d k x d k y \frac{e^{jkr}}{r}=\iint A(k_x,k_y)e^{j(k_xx+k_yy)}{ \rm dk_x d k_y} rejkr=A(kx,ky)ej(kxx+kyy)dkxdky
A ( k x , k y ) A(k_x,k_y) A(kx,ky)可以表示为:
( 2 π ) 2 A ( k x , k y ) = ∬ e j k r r e − j ( k x x + k y y ) d x d y (2\pi)^2A(k_x,k_y)=\iint \frac{e^{jkr}}{r}e^{-j(k_xx+k_yy)}{ \rm dx dy} (2π)2A(kx,ky)=rejkrej(kxx+kyy)dxdy
利用坐标变换式,将直角坐标变换成极坐标形式,波矢域与空间域都变成极坐标形式,积分变量在替换时需要乘上一个雅克比行列式,下图是转换关系:
在这里插入图片描述
这么变换的目的就是把上式右边的积分给算出来
( 2 π ) 2 A ( k x , k y ) = ∫ 0 2 π d φ ∫ 0 ∞ e j r [ k − ξ c o s ( ψ − φ ) ] d r (2\pi)^2A(k_x,k_y)=\int_0^{2\pi} {\rm d\varphi} \int_0^\infty e^{jr[k-\xi cos(\psi-\varphi)]}{\rm d r} (2π)2A(kx,ky)=02πdφ0ejr[kξcos(ψφ)]dr
先对 r r r积分,再对 φ \varphi φ做积分,通过查积分表,可以得到结果:
A ( k x , k y ) = j 2 π k 2 − k x 2 − k y 2 = j 2 π k z A(k_x,k_y)=\frac{j}{2\pi \sqrt{k^2-k_x^2-k_y^2}}=\frac{j}{2\pi k_z} A(kx,ky)=2πk2kx2ky2 j=2πkzj
综上,球面波展开成平面波的组合:
e j k R R = ∬ j 2 π k z e j ( k x x + k y y ± k z z ) d k x d k y \frac{e^{jkR}}{R}=\iint \frac{j}{2\pi k_z}e^{j(k_xx+k_yy\pm k_zz)}{ \rm dk_x d k_y} RejkR=2πkzjej(kxx+kyy±kzz)dkxdky
这里的平面可以是普通的平面波,也可以是非均匀平面波(凋落波),即由于 ξ > k \xi >k ξ>k k z k_z kz为纯虚数,如下式,但该波仅在 z > 0 z>0 z>0时才有物理意义
e − k z z e j ( k x x + k y y ) e^{-k_zz}e^{j(k_xx+k_yy)} ekzzej(kxx+kyy)

根据平面波的反射系数求解球面反射波的表达式

示意图如下,注意这里实际上是一个二维的场景,已将 x , y x,y x,y缩为 r r r,取的是三维空间中的一个径向的面来分析问题
在这里插入图片描述
根据上面得到的结论,可以写出球面反射波的积分形式:
p r = ∬ j V ( k z ) 2 π k z e j ( k x x + k y y + k z ( z + z 0 ) ) d k x d k y p_r=\iint \frac{jV(k_z)}{2\pi k_z}e^{j(k_xx+k_yy+ k_z(z+z_0))}{ \rm dk_x d k_y} pr=2πkzjV(kz)ej(kxx+kyy+kz(z+z0))dkxdky
将波矢域的直角坐标形式转换成极坐标形式,同样是为了求出上述积分式:
p r = ∫ 0 ∞ j V ( k z ) 2 π k z e j ( k z ( z + z 0 ) ) ξ d ξ ∫ 0 2 π e j ξ c o s ( ψ − φ ) d ψ p_r=\int_0^\infty \frac{jV(k_z)}{2\pi k_z}e^{j(k_z(z+z_0))}\xi{ \rm d\xi }\int_0^{2\pi}e^{j\xi cos(\psi-\varphi)} {\rm d \psi} pr=02πkzjV(kz)ej(kz(z+z0))ξdξ02πejξcos(ψφ)dψ
后面那个对 ψ \psi ψ的积分的结果实际上是0阶贝塞尔函数,0阶贝塞尔函数又可以转换为第一类0阶汉克尔函数和第二类0阶汉克尔函数的组合,化简得:
p r = j 2 ∫ − ∞ ∞ V ( k z ) k z H 0 ( 1 ) ( ξ r ) e j [ k z ( z + z 0 ) ] ξ d ξ p_r=\frac{j}{2}\int_{-\infty}^\infty \frac{V(k_z)}{k_z}H_0^{(1)}(\xi r)e^{j[k_z(z+z_0)]}\xi{ \rm d\xi } pr=2jkzV(kz)H0(1)(ξr)ej[kz(z+z0)]ξdξ

反射系数与入射角无关时的球面反射波表达式

如果反射系数与入射角无关时(即分界面为刚性分界面),则可以将反射系数 V ( k z ) V(k_z) V(kz)移到积分号外面,得到:
p r = j V ( k z ) 2 ∫ − ∞ ∞ H 0 ( 1 ) ( ξ r ) e j [ k z ( z + z 0 ) ] k z ξ d ξ p_r=\frac{jV(k_z)}{2}\int_{-\infty}^\infty H_0^{(1)}(\xi r) \frac{e^{j[k_z(z+z_0)]}}{k_z}\xi{ \rm d\xi } pr=2jV(kz)H0(1)(ξr)kzej[kz(z+z0)]ξdξ
可以发现,这个积分就是柱面波与球面波之间的变换式,故上式可以转换为球面波形式,其中 R 1 = r 2 + ( z + z 0 ) 2 R_1=\sqrt{r^2+(z+z_0)^2} R1=r2+(z+z0)2
p r = V e j k R 1 R 1 p_r=\frac{Ve^{jkR_1}}{R_1} pr=R1VejkR1
上式的物理意义就是 O ′ O^{'} O处虚源产生的声场,点源强度乘上了一个反射系数。

一般情况下的远场球面反射波表达式

远场条件 ξ r ≫ 1 \xi r \gg1 ξr1,此时对0阶第一类汉克尔函数作近似:
H 0 ( 1 ) ( ξ r ) ≈ 2 π ξ r e j ( ξ r − π 4 ) H_0^{(1)}(\xi r)\approx \sqrt{\frac{2}{\pi \xi r}}e^{j(\xi r -\frac{\pi}{4})} H0(1)(ξr)πξr2 ej(ξr4π)
代入前面的积分式,可以得到:
p r = e j π 4 2 π r ∫ − ∞ ∞ ξ V ( k z ) k z e j w ( ξ ) d ξ p_r=\frac{e^{\frac{j\pi}{4}}}{\sqrt{2\pi r}} \int_{-\infty}^{\infty} \frac{\sqrt{\xi}V(k_z)}{k_z}e^{jw(\xi)} {\rm d \xi} pr=2πr e4jπkzξ V(kz)ejw(ξ)dξ
w ( ξ ) ≡ ξ r + k z ( z + z 0 ) w(\xi)\equiv \xi r+k_z(z+z_0) w(ξ)ξr+kz(z+z0)
因为 w ( ξ ) w(\xi) w(ξ)变化剧烈,而 ξ V ( k z ) k z \frac{\sqrt{\xi}V(k_z)}{k_z} kzξ V(kz)变化相对来说缓慢,故可以用稳相法求积分,即先求出稳相点,然后在稳相点附近展开到二阶项,然后代入积分项,直流项可直接提出来,二阶项用到了换元技巧以及解析函数的围线积分为0的性质,对积分路径进行了变换,最终化简得到了远程条件下的球面反射波的表达式:
p r = V ( θ 0 ) e j k R 1 R 1 p_r=\frac{V(\theta_0)e^{jkR_1}}{R_1} pr=R1V(θ0)ejkR1
其中 θ 0 \theta_0 θ0对应的是图上的角度,其实也是稳相点求出的角度,恰好是声源以声线入射再反射到达目标点对应的角度。

Reference:
L.M. Brekhovskikh,&Yu.P. Lysanov. Fundamentals of Ocean Acoustic(Chapter 4)

  • 5
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值