平面波向球面波的展开

  • 平面波向球面波的展开是一个极其重要的话题

e^{-i\vec{k}\cdot\vec{r}}=e^{-ikrcos\theta}=e^{-ikrx}=\sum_{l=0}^\infty c_l(kr)P_l(x)

  • 手稿放在文章的结尾处 

  • 勒让德展开

\int_{-1}^1e^{-ikrx}P_l(x)dx=c_l(kr)\int_{-1}^1P^2_l(x)dx

  • citation 1:

\int_{-1}^1P_l^2(x)dx=\frac{2}{2l+1}

  • 我们整理一下,对exp(x)做泰勒展开,得

c_l(kr)=\sum_{n=0}^\infty \frac{(-i)^n(kr)^n}{n!}\int_{-1}^1x^nP_l(x)dx

  • citation 2:

P_l(x)=\frac{1}{2^ll!}\frac{d^l}{dx^l}(x^2-1)^l

  • 我们先把精力集中到解决这个积分上去
    • 反复利用分部积分

\int_{-1}^{1}x^n\frac{d^l}{dx^l}(x^2-1)^l dx=[x^n\frac{d^{l-1}}{dx^{l-1}}(x^2-1)|^{1}_{-1}-n\int_{-1}^1x^{n-1}(x^2-1)^ldx]=... 

=(-1)^n\frac{n!}{(n-l)!}\int_{-1}^1x^{n-1}(x^2-1)^ldx

  • 考虑到奇偶性问题
    • 当且仅当n=2m+l时积分不为零
  • 现在做变换 x=t^{1/2}
    • 注意,这是一个偶函数积分,因此我们只需要计算0-1上的积分然后乘2

=\frac{n!}{(2m)!}\int_0^1t^{m-1/2}(t-1)^ldt

  • citation 3:B函数
    • 对于B函数我们需要知道的不多,只需要知道

\int_0^1t^{m-1}(t-1)^{n-1}dt=B(m,n)=\frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}

 

  • 很好,现在我们回到主线上去 
    • 经过一些小小的整理,我们可以得到

c_l(kr)=\frac{2l+1}{2\times 2^{l}}(-i)^l\sum_{m=0}^\infty \frac{(-1)^m\times(kr)^{2m+l}}{(2m)!}\frac{\Gamma(m+1/2)}{\Gamma(m+l+3/2)}

  • 现在分离出一个\Gamma(1/2)出来

c_l(kr)=\frac{2l+1}{2\times 2^{l}}(-i)^l\sum_{m=0}^\infty \frac{(-1)^m\times(kr)^{2m+l}}{(2m)!}\frac{\Gamma(1/2)\Gamma(m+1/2)}{\Gamma(1/2)\Gamma(m+l+3/2)}

  • citation 4:小技巧 \frac{\Gamma(m+\frac{1}{2})}{\Gamma(1/2)}=\frac{(2m-1)!!}{2^m}
    • 证明非常得简单,只需要按照\Gamma(z+1)=z\Gamma(z)不断展开即可
  • citation 5:小技巧 \frac{(2m-1)!!}{(2m)!}=\frac{1}{2^mm!}
    • 证明同样非常得简单

  • 我们最后一次回到主线上去,现在我们已经可以得到了

(2l+1)(-i)^l\sum_{m=0}^\infty (-1)^m(\frac{kr}{2})^{2m+l}\frac{\Gamma(1/2)}{2\cdot m!\Gamma(m+l+3/2)}

  • 虽然在特殊函数的课本上没有明确得给出球贝塞尔函数的表达式,但是这对于聪明的我们来说完全没有任何问题

j_l(z)=\frac{\Gamma(1/2)}{2}\sum_{m=0}^\infty\frac{(-1)^m}{m!\Gamma(m+l+3/2)}(\frac{z}{2})^{2m+l}

  • 于是我们得到了

c_l=(2l+1)(-i)^lj_l(kr)


 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值