一、单色光波长的复振幅表示
实波函数
复波函数
复振幅
由于时间因子相同,可以用复振幅来描述
光强
1.1 球面波的复振幅(单色点光源发出的光波)
等相位面是同心球面,波矢处处与等相位面垂直,即
是 r = 1 处的振幅
发散球面波:
会聚球面波:
球面光波在整个空间中, 沿任何方向上的空间频率均为1/, 沿任何方向上的空间周期均为
。
1.2 平面波的复振幅
在整个空间中:
① 传播方向相同,即仅有一个波矢方向
② 等相位面是平面,总是与波矢垂直
③ 振幅处处相等,是常数
单色平面波的复振幅:
令
在xy平面上的复振幅分布表示为
平面波的线性相位因子
等相位线是一组平行等距的平行斜线, 由于相位值相差2Π的各点的光振动实质上是相同的, 所以平面上复振幅分布是以2Π为周期的周期分布。
实际上,单色平面波与单色球面波的获取:
二、平面波的空间频率
2.1 k位于
z平面内
复振幅在xy面上的空间周期可以用相位差2Π的两相邻等相位线的间距 X 表示
用空间周期的倒数表示 x 方向单位长度内变化的周期数,即
因y 方向空间周期为无穷,空间频率为0,则平面波复振幅为:
2.2 任意方向传播的平面波
在平面上的空间频率
相应的空间频率分别为
平面波复振幅
2.3 整个空间
z方向的空间频率
复振幅分布
1/表示平面波沿传播方向的空间频率。
三、复振幅分布的空间频率(角谱)
物函数g(x,y)可以分解为无穷多个不同频率(,
),不同取向(
=
/
) ,不同权重G(
,
)d
d
的指数基元。
指数基元 exp[ j2π (ξx +ηy)]代表一个传播方向余弦为 cosα = λξ,cos β = λη 单位振幅的单色平面波。因此,物函数 g ( x , y ) 可以看作不同传播方向的单色平面波分量的线性叠加。
G(ξ,η) 为复振幅分布 g(x, y)的空间频谱,方向余弦表示
这里将平面波的空间频率与特定的传播方向相对应,
称为平面波的角谱。