二维光场分析

一、单色光波长的复振幅表示

实波函数

复波函数

复振幅

 由于时间因子相同,可以用复振幅来描述

光强

1.1 球面波的复振幅(单色点光源发出的光波)

等相位面是同心球面,波矢处处与等相位面垂直,即

^{a_{0}}是 r = 1 处的振幅

发散球面波:

\lambda会聚球面波:

 球面光波在整个空间中, 沿任何方向上的空间频率均为1/\lambda, 沿任何方向上的空间周期均为\lambda

 1.2 平面波的复振幅

在整个空间中:

① 传播方向相同,即仅有一个波矢方向

② 等相位面是平面,总是与波矢垂直

③ 振幅处处相等,是常数

 单色平面波的复振幅:

 在xy平面上的复振幅分布表示为

平面波的线性相位因子 

        等相位线是一组平行等距的平行斜线, 由于相位值相差2Π的各点的光振动实质上是相同的, 所以平面上复振幅分布是以2Π为周期的周期分布。

 实际上,单色平面波与单色球面波的获取:

 二、平面波的空间频率

2.1 k位于x_{0}z平面内

 复振幅在xy面上的空间周期可以用相位差2Π的两相邻等相位线的间距 X 表示

 用空间周期的倒数表示 x 方向单位长度内变化的周期数,即

 因y 方向空间周期为无穷,空间频率为0,则平面波复振幅为:

2.2 任意方向传播的平面波

在平面上的空间频率

 相应的空间频率分别为

 平面波复振幅

 2.3 整个空间

z方向的空间频率

复振幅分布

1/\lambda表示平面波沿传播方向的空间频率。

三、复振幅分布的空间频率(角谱)

         物函数g(x,y)可以分解为无穷多个不同频率(\zeta,\eta),不同取向(\tan \theta = \eta/\zeta) ,不同权重G(\zeta,\eta)d\zetad\eta的指数基元。

        指数基元 exp[ j2π (ξx +ηy)]代表一个传播方向余弦为 cosα = λξ,cos β = λη 单位振幅的单色平面波。因此,物函数 g ( x , y ) 可以看作不同传播方向的单色平面波分量的线性叠加。

        G(ξ,η) 为复振幅分布 g(x, y)的空间频谱,方向余弦表示

这里将平面波的空间频率与特定的传播方向相对应,

 称为平面波的角谱。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

薰衣草2333

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值