【论文笔记】图嵌入:问题、技术和应用

论文原文:A Comprehensive Survey of Graph Embedding:Problems, Techniques and Applications

图嵌入目的:图嵌入将图转换为保存图信息的低维空间。

  • 图表示学习和图嵌入的区别:图表示学习不要求学习的表示是低维的。
  • 输入图分为四类,包括齐次图、异构图、具有辅助信息的图和由非关系数据构造的图
  • 图嵌入输出分类,包括节点嵌入、边缘嵌入、混合嵌入和全图嵌入…
    在这里插入图片描述
    在这里插入图片描述
    拉普拉斯特征映射方法详情
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    总结
      基于矩阵分解的图嵌入基于全局节点对相似性统计来学习表示。因此,在某些任务中,它可以优于基于深度学习的图嵌入(涉及随机游走),因为后者依赖于单独的局部上下文窗口。然而,无论是接近矩阵的构造还是矩阵的特征分解都是耗时和空间消耗的,使得矩阵因式分解对于大图来说都是低效和不可扩展的。
       深度学习(DL)在不同的图嵌入方法中都取得了很好的效果,因为它能够从复杂的图结构中自动识别有用的表示。例如,具有随机游走的DL(例如Deepwalk[17]、node2vec[28]、metapath2vec[46])可以通过图上的采样路径自动利用邻域结构。没有随机游走的DL可以对齐次图中大小不一的子图结构建模,或者对异构图中不同类型间节点的交互建模,作为有用的表示。另一方面,DL也有其局限性。对于具有随机游动的DL,它通常考虑同一路径中的节点本地邻居,从而忽略全局结构信息。此外,由于嵌入和路径采样不是在一个统一的框架中联合优化的,因此很难找到最优的采样策略。对于没有随机游动的DL,计算成本通常很高。传统的深度学习体系结构假设数据是一维或者二维。然而,图没有这样的网格结构,因此需要不同的解决方案来提高效率。
      基于边缘重建的图嵌入优化了基于观察到的边缘或排序三重态的目标函数。与前两类图嵌入相比,它更有效。然而,这一系列方法是使用直接观察到的局部信息进行训练的,因此所获得的嵌入缺乏对全局图结构的认识。
      基于图核的图嵌入将图转换为一个单一向量,以方便图级分析任务,如图分类。它比其他类别的技术更有效,因为它只需要枚举图中所需的原子子结构。但也有局限,首先,子结构不是独立的。例如,大小为k+1的图形可以通过添加一个新节点和一些边从大小为k的图形中导出。这意味着图表示中存在冗余信息。其次,当子结构的大小增大时,嵌入维数通常呈指数增长,从而导致嵌入中的稀疏问题。
      基于生成模型的图嵌入可以自然地利用来自不同来源的信息(例如,图结构、节点属性)在一个统一的模型中。将图直接嵌入到潜在的语义空间中,生成可以使用语义解释的嵌入。但是,使用某些分布来模拟观测的假设是很难证明的。此外,生成方法需要大量的训练数据来估计适合数据的适当模型。因此,对于小图或少量的图,它可能不能很好地工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值