岭回归(ridge regression)

岭回归一般可以用来解决线性回归模型系数无解的两种情况。
一方面是自变量间存在高度多重共线性另一方面则是自变量个数大于等于观测个数。


即在X’X的基础上加上一个较小的lambda扰动

  • cv::Mat RidgeRegression(cv::Mat D, cv::Mat Y)

  • {

    • float lamda = 0.01;

    • cv::Mat tranD = D.t();

    • cv::Mat I = cv::Mat::eye(D.cols,D.cols,CV_32F);

    • cv::Mat tmp = tranD*D+lamda*I;

    • cv::Mat invtmp = tmp.inv(DECOMP_SVD);

    • cv::Mat W = invtmp * tranD* Y;

    • return W;

  • }

 
  •  
  • def ridgeRegres(xMat,yMat,lam=0.2):

    • xTx = xMat.T*xMat

    • denom = xTx + np.eye(np.shape(xMat)[1])*lam

    • if np.linalg.det(denom) == 0.0:

      • print("This matrix is singular, cannot do inverse")

      • return

    • ws = denom.I * (xMat.T*yMat)

    • return ws

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值