反向传播就是梯度不断分解的过程。(如果想不通没关系,因为这个说法并不严谨)
简单理解一下
首先第一次前向传播,参数通过随机赋予或者人为设定的权重w和偏置通过前向传播一直到输出层的参数,此时输出y和标签很大可能有偏差&,那么开始考虑如何更新参数呢从小减小&呢,思考一下,既然输入层可以前向传播到输出层,反过来想,我们的目的是最小化误差&,那么如果我们找到一种方式可以使得误差在尽可能小,因为影响误差&的参数就是前面所有的w和b,以及各网络层的输出。进一步思考,我们把误差从后向前传播当然条件就是使得误差&尽可能小。这里有一个很重要的思想,就是损失函数J在各个参数各自的梯度方向上更新参数,那么J的值更新的的越快(梯度方向由向量表示,多个梯度方向的向量和即为损失函数值更新最快的方向),这里就涉及到了梯度下降法。
(如果某一个w和b对最后的判断结果产生了重大的影响,那么当这个判断结果有偏差的时候,那么这个w和b一定也是对这个偏差有重大影响的。所以希望减小偏差时,优先调整那些对偏差有重大影响的参数。反向传播传的是偏差的信息,把偏差传递到各个参数上,根据参数对偏差贡献的大小,相应的承担修改的责任)“就是说J由多个参数决定,假设有三个参数决定,那么在一个四维空间中,a,b,c共同决定了J的大小,那么我们希望J的值开始变小,那么只要a,b,c不论哪个往负梯度方向改变,那么J都会变小,如果他们同时往负梯度方向改变,那么J减小的速率是最快的。”
梯度下降法
梯度
偏导
首先构造损失函数J,如下图所示:
进一步简化J如下:
这时如果对J求梯度,它其实代表了增大最快的那个方向,负梯度方向也就是减小最快的那个方向。对其求梯度,如下图:
w我们希望J最快的减小,也即希望最后输出层a和标签y的差值最小,或者说希望a沿着负梯度方向最快走一截,但是a由w和b以及上一层的a决定,所以将a(也可以理解为J)的负梯度方向分解为w的负梯度方向,b的负梯度方向,a的负梯度方向,这样w和b就可以进行更新了,并且他两的变化的目标就是使J朝着最快的方向减小一段。而a的变化还要取决于上一层的w和b,这时可以构造新的损失函数,使得误差继续向上一层传递(这里有一种新的理解就是a的值始终由w和b决定,那么只需要朝着负梯度方向不断更新w和b,自然a的值也会不断地更新,当然a也可以理解为只是个中间值,作用就是帮助反向传播误差),当输出层的w和b更新完成后,继续开启下一轮,此时输出层的w和b暂时不发生变化,相当于已经完成它这一次更新的任务,当然a也是要求它沿着负梯度方向走一截,而它的梯度方向又可以分解为新的w,b,a,误差就这样一直方向传递,直到输入层,w和b也一直更新直到全部更新一遍。到这里所有的参数都能在梯度方向上修改一遍。
链式求导
第一步肯定是对J求梯度,
新建一个虚拟的l+1层,这个并不是真的有一个感知机,而是把这个分量当做是一个新的误差函数便于梯度进行分解,而这个感知机只对第一个有效。
该调整调整,该向前传播向前传播。
到这,神经网络的第一层学习完成了一遍,除第一层输出外,所有系数的更新迭代完成了一遍。