矩阵分析学习(五)

一、向量范数

定义1:设V是数域P上的线性空间,若对于任意V中的向量a,都有唯一非负的||a||与之对应,且满足一下三个条件:

1)非负性:当a不等于0时,||a||大于等于0;(又叫正定性)

2)齐次性:||ka||=|k|*||a||

3)三角不等式:||a+b||小于等于||a||+||b||;(||a-b||大于等于||a||-||b||

则称非负实数||a||为向量a的范数,简言之,向量的范数是定义线性空间上的非负实值函数;

(对于同一个线性空间中可以定义不同的范数)

定义2:定义了范数的线性空间称为赋范线性空间;

定理1:设||*||a和||*||b均为V上的两个范数。如果存在两个常数M>=m>=0,使得对于任意向量a属于V,有下式成立

m||a||a<=||a||b<=M||a||a,则称这两个范数是等价的;

引理:||*||是实线性空间V^n上的范数,{e1,e2,....,en}是V^n上的一组基,对V^n上的任意向量a=x1e1+x2e2+...+xnen

定义R^n->R的多元函数:t(x1,x2,...,xn)=||a||=||x1e1+x2e2+...+xnen||,则t(x1,x2,...,xn)是连续函数;

证明:|f(x1,x2,...,xn)-f(y1,y2,...,yn)|<=c{|x1-y1|+|x2-y2|+....+|xn-yn|}即可证明f(x1,x2,...,xn)连续

|||a||-||b|||<=||a-b||(三角不等式)=||(x1-y1)e1+(x2-y2)e2+.....+(xn-yn)en||<=|x1-y1|||e1||+|x2-y2|||e2||+......+|xn-yn|||en||

(结合不等式放缩)<=C(|x1-y1|+|x2-y2|+...|xn-yn|),C=max(||e1||,,||e2||,....,||en||),即可得出t(x1,x2,...,xn)是连续的。

定理2:在有限维实线性空间中的任意范数都是等价的;

二、矩阵范数

定义1:对于任意的方阵A属于C^n*n,存在一个||A||与之对应,且满足

1)||A||是范数;(满足范式定义的三条规则)

2)||AB||<=||A||*||B||;则非负实函数||A||称为n*n方阵的范数。(矩阵范数)

定义2:对于任意A属于C^n*n以及n维列向量a属于数域P^n,矩阵范数||A||能与某种向量范数||a||满足关系式

||Aa||<=||A||*||a||,则称矩阵范数||A||与向量范数||a||是相容的;

三、向量和矩阵的极限

定义1:若x^(m)=(x1^(m),x2^(m),....,xn^(m))属于C^n*n(m为自然数集合),如果存在极限

换言之,向量序列的极限是通过坐标极限来定义的,当向量序列不收敛时,也叫发散的

定义2:(向量的极限和向量范数之间的关系)

(对任一向量范数||*||)

定义矩阵的极限:

定义:(矩阵的极限和矩阵范数的关系)

1)如果Am极限为A,则对于C*n*n的任何矩阵范数||*||,||A||都有界;

2)如果Am的极限是A,Bm的极限是B(矩阵的极限),am趋向于a,bm趋向于b(数列的极限),则有:

3)如果Am的极限是A,且Am^-1趋向于A^-1,则:

定理:A^m的极限为0的充分条件是有某一个方阵范数||*||,使得||A||<1 ,其充要条件是A的所有特征值的模都小于1;

定理:矩阵A中的每一个特征值λ的模|λ|都不大于矩阵A的任一范数||A||,即|λ|<=||A||;

四、矩阵幂级数

定义:在给定C^n*n中的矩阵序列,A1,A2,....Am....则和式A1+A2+...+An+..称为矩阵.级数。

性质:1、如果一个矩阵级数绝对收敛,则此矩阵级数收敛,且交换各项的次序所得到的新级数仍收敛,和也不变。

2、方阵级数绝对收敛的充要条件是,对于任意一种矩阵范数||*||,正项级数收敛。

定义:矩阵A全部特征值的模的最大值,称之为谱半径;

对于一个矩阵A,任给一个正数ε,都有某一矩阵范数||*||,使得||A||<=ρ(A)+ε;

在收敛半径以内绝对收敛,在收敛半径之外发散) 

 

(大的收敛,则小的也收敛)

五、矩阵函数

常用的复幂级数:(方阵的幂级数只需要将幂函数中的z换成对应的矩阵名,与z相加的常数1换为单位阵E即可

 

 已知矩阵的标准型,可以用来求解矩阵函数f(A):主要分为两种情况(对角矩阵的形式,约当矩阵的形式)

1)当A相似于对角矩阵B的时候,即B=P^-1AP,可以得出A=PBP^-1,由此可得出

f(A)=Pf(B)P^-1,此类问题便转化为相似对角化问题以及求解相似对角化矩阵P和其逆矩阵

2)当矩阵A不可以相似对角化为对角矩阵时,则其标准型一定可以表示为jordan型,即:

jorjan矩阵的f(J)的求解公式,不同Jordan块均用此公式,最后累加即可(记忆方式:f(x)的n阶导数除以导次数的阶乘);

利用最小多项式计算:

f(λ) =φ(λ)q(λ)+r(λ),f(λ) 是 l 次多项式,φ(λ)是方阵A 的最小多项式,其次数为m,这里的r(λ)要么为0要么是比最小多项式

幂次数还低的多项式。转换为矩阵A 的矩阵级数f(A) =φ(A)q(A)+r(A)=r(A),通过最小多项式可以降低所求级数的幂次;

有几个未知数带求就求几次导数,联立方程组求解即可,根据特征多项式的最高次数确定m,以此来求解对应方阵级数到m-1;

 对于含有函数的形式,类比实值类型即可方法类似;

六、矩阵的微分与积分

若A(z)=(aij(z))m*n的每一个元素aij(z)都是复变量z的函数,且都在z=z0或z的某一个区域内可导,则定义A(z)的导数为

矩阵中的每一个元素都对z求导所形成的矩阵;

性质:1、【A(z)+B(z)】'= A(z)'+B(z)';和的导数等于导数的和

2、【A(z)B(z)】'=A(z)'B(z)+A(z)B(z)';前导乘后不导加前不导乘后导  (类比函数求导即可

3、A(u)=(aij(u))m*n,u=f(z),则其导数为:类比符合函数求导

4、若n阶函数矩阵A(z)可逆,且A(z)及其逆矩阵A^-1(z)都可导

 (集合积的导数即可证明)

类似的我们可以定义函数矩阵对数值变量的积分,对其积分就是对每一个元素的积分

 矩阵函数积分的性质:

 七、常用矩阵函数的性质

1)【e^(At)】' =Ae^(At)=e^(At)A;(可交换)

2)若AB=BA,则(e^At)B=B(e^At);

3)若AB=BA,则(e^A)(e^B)=(e^B)(e^A)=e^(A+B);可类比幂函数的乘积

4)若AB=BA,则sin(A+B)=sinAcosB+cosAsinB、cos(A+B)=cosAcosB-sinAsinB

特殊的当A=B时,cos2A=(cosA)^2-(sinA)^2、sin2A=2sinAcosA;

5)(sinA)^2+(cosA)^2=E、sin(A+2πE)=sinA、cos(A+2πE)=cosA、e^(A+i2πE)=e^A;

6)e^(iA)=cosA+isinA、cosA=(1/2)(e^iA+e^-iA)、sinA=(1/2i)(e^iA-e^-iA)、cos(-A)=cosA、sin(-A)=-sinA

  • 6
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值