从布朗运动到Black–Scholes

我们先看Shreve给出的布朗运动的定义
在这里插入图片描述
简单来说布朗运动就是一个“无记忆”的随机过程。每次的增量服从正态分布,这个增量与之前的路径无关,增量的variance等于这个增量对应时间差( V a r [ W ( t + Δ t ) − W ( t ) ] = Δ t Var[W(t+\Delta t)-W(t)]=\Delta t Var[W(t+Δt)W(t)]=Δt).

现在我们考虑更为复杂的随机过程。在微积分中,我们会有微分的概念 d x = f ′ ( t ) d t ( x = f ( t ) , d t = t + d t − t ) dx = f'(t)dt (x = f(t), dt = t+dt - t) dx=f(t)dt(x=f(t),dt=t+dtt). 如果我们简单的有 d x = μ d t , x ( 0 ) = 0 dx=\mu dt, x(0)=0 dx=μdt,x(0)=0, 我们就可以推出 x ( t ) = μ t x(t) = \mu t x(t)=μt. 我们现在运用刚学的布朗运动,在原有的微分的基础上加入随机扰动 d W = W ( t + d t ) − W ( t ) dW = W(t+dt)-W(t) dW=W(t+dt)W(t). 用我们刚学得关于布朗运动的性质,这个随机绕动 d W dW dW 就是一个均值为0,variance为 d t dt dt 的正态随机量。在微分中加入随机扰动 σ d W \sigma dW σdW, 这样我们得到 d x = μ d t + σ d W dx = \mu dt + \sigma dW dx=μdt+σdW. 此时 x ( t ) x(t) x(t) 就不在是一个确定的函数而变成了一个随机变量。我们可以类似的求得 x ( t ) = μ t + σ W ( t ) x(t) = \mu t + \sigma W(t) x(t)=μt+σW(t).

现在我们来看一个略微复杂的随机过程, d S = μ S   d t + σ S   d W dS = \mu S \,dt + \sigma S \,dW dS=μSdt+σSdW. 这是Black–Scholes模型中假设股票 S S S服从的随机过程。为了理解这个过程,我们来看一下Ito公式。假设函数 C ( t , x ) C(t,x) C(t,x)有连续的二阶导数,那么我们有
d   C ( t , S ) = C t   d t + C S   d S + 1 2 C S S   ( d S ) 2 = C t   d t + C S ( μ S   d t + σ S   d W ) + 1 2 C S S   ( μ S   d t + σ S   d W ) 2 = C t   d t + C S ( μ S   d t + σ S   d W ) + 1 2

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值