CV | 360BEV: Panoramic Semantic Mapping for Indoor Bird‘s-Eye View理解

本文介绍了360BEV方法,一种专为室内场景设计的全景语义映射方案,通过Transformer网络生成鸟瞰视图的语义标签,且在室内语义映射任务中表现出色。研究还涵盖了模型架构、数据集处理和训练流程,以及与相关工作的比较。
摘要由CSDN通过智能技术生成

本文主要是对于论文360BEV的解读和实现。

Paper:2023.03_360BEV: Panoramic Semantic Mapping for Indoor Bird's-Eye View

360BEV:室内鸟瞰全景语义映射

arxiv.org/pdf/2303.11910

Code:jamycheung/360BEV: Repository of 360BEV (github.com)

Demo:360BEV (jamycheung.github.io)

 

论文概述

这篇论文提出了一种名为360BEV的专用解决方案,用于从鸟瞰图像对室内场景进行全景语义映射。主要贡献包括:

  1. 提出了一种从全景图像生成整体鸟瞰视图语义映射的方法,不依赖于窄视野图像或运动线索。
  2. 提出模型360Mapper,可以从全景图像预测语义标签和非模态语义映射。
  3. 所提出的方法在室内语义映射基准测试中取得了最佳性能,优于现有方法。

相关工作

基于鸟瞰图的语义分割,三种方法:

  • Early projection: Proj.→Enc.→Seg. in Fig. 2c.
  • Late projection: Enc.→Seg.→Proj. in Fig. 2d.
  • Intermediate projection: Enc.→Proj.→Seg. in Fig. 2e

模型:360BEV

这里根据原有的数据集,生成了新的数据集

360Mapper框架包括四个步骤:

  1. 基于Transformer的骨干网络从全景图像中提取特征。
  2. 逆向径向投影(IRP)模块通过深度生成的参考点得到一个2D索引。
  3. 360度注意力模块通过2D索引增强前视图特征,并根据BEV查询生成偏移量,以消除失真效应。
  4. 轻量级解码器解析投影的特征图,预测语义BEV地图。

实验

4块A100GPU

50epoch

优化器:AdamW

批次:4

数据集:360FV-Matterport 和Stanford2D3D输入是512×1024

项目实现

设置环境

git clone  https://github.com/jamycheung/360BEV
conda create -n 360BEV python=3.8
conda activate 360BEV
cd 360BEV
# 安装mmedtection
# conda create -n open-mmlab python=3.7 -y
# conda activate open-mmlab
# conda install pytorch torchvision -c pytorch
# or conda install pytorch=1.3.1 cudatoolkit=9.2 torchvision=0.4.2 -c pytorch

# 克隆项目
git clone https://github.com/open-mmlab/mmdetection.git
cd mmdetection

pip install -r requirements/build.txt
pip install "git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI"
pip install -v -e . 

cd..
pip install -r requirements.txt

数据准备

数据集使用Stanford2D3D和Matterport3D

作者提供了谷歌drive的下载地址:360BEV-Stanford,360BEV-Matterport ,360FV-Matterport

这里使用最小的

解压后如图,分为训练和测试 

 

数据格式处理如下

数据集全景(Scene)房间(Room)Frame种类(Category)
train52151,04013
val15537313
360BEV-Stanford62701,41313
train61--7,82920
val7--77220
test18--2,01420
360BEV-Matterport862,03010,61520

data/
├── Stanford2D3D
│   └── area_[1|2|3|4|5a|5b|6]
│       ├── rgb/*png
│       └── semantic/*png
│
├── 360BEV-Stanford
│   ├── training
│   └── valid
│       ├── data_base_with_rotationz_realdepth/*h5
│       └── ground_truth/*h5
│
├── 360BEV-Matterport
│   ├── training
│   ├── testing
│   └── valid
│       ├── smnet_training_data_zteng/*h5
│       └── topdown_gt_real_height/*h5
│
└── 360FV-Matterport
    ├── 17DRP5sb8fy
    │   ├── depth/*png
    │   ├── rgb/*png
    │   └── semantic/*png   
    └── ...

训练


# 360BEV_Matterport
python train_360BEV_Matterport.py --config configs/model_360BEV_mp3d.yml

# 360BEV_S2d3d
python train_360BEV_S2d3d.py --config configs/model_360BEV_s2d3d.yml

# Stanford2D3D
python train_pano_360Attention_S2d3d.py --config configs/model_fv_s2d3d.yml

# 360FV-Matterport
python train_pano_360Attention_Matterport.py --config configs/model_fv_mp3d.yml

测试

# 360BEV_Matterport
python test_360BEV_Matterport.py --config configs/model_360BEV_mp3d.yml

# 360BEV_S2d3d
python test_360BEV_S2d3d.py --config configs/model_360BEV_s2d3d.yml

# Stanford2D3D
python test_pano_360Attention_S2d3d.py --config configs/model_fv_s2d3d.yml

# 360FV-Matterport
python test_pano_360Attention_Matterport.py --config configs/model_fv_mp3d.yml

代码解析

论文以transformer为骨干网络提取特征,transformer.py在

# 初始化
generate feature
FPN output feature maps

# 从transformer提取特征后,

更新bev的高,宽,以及位置

疑问与解答

Q1:在BEV中,摄像头是固定,还是固定可环视?输入的值的区别是什么?

训练时分为俩个阶段

Q2:语义分割中前景,中景,从上到写视角是指什么 意思?

语义分割中,我们常用以下几个视角来描述图像的不同部分:

  1. 前景:前景是图像中最显著的部分,通常是我们关心的目标物体。在语义分割中,前景指的是被标记为特定类别(如人、车、树等)的区域。

  2. 中景:中景是介于前景和背景之间的部分。在拍摄和视觉艺术中,中景通常是指人物的膝盖以上的取景范围。在语义分割中,中景可能包括一些次要目标或环境元素,但不如前景那么显著。

  3. 从上到下视角:这是一种拍摄或观察图像的方式。从上到下视角意味着我们以一种俯视的方式来看待场景,就像我们站在高处往下看一样。这种视角可以用于强调环境、布局或整体结构。

参考文献

【1】Joint 2D-3D-Semantic Data for Indoor Scene Understanding 1702.01105 (arxiv.org)

【2】360BEV: Panoramic Semantic Mapping for Indoor Bird's-Eye View,arXiv - CS - Computer Vision and Pattern Recognition - X-MOL【3】几种流行的视觉bev算法通俗对比介绍_bev视觉缺点-CSDN博客

【4】四. 基于环视Camera的BEV感知算法-环视背景介绍_remote camera 环视摄像头-CSDN博客

【5】(BEV综述)Delving into the Devils of Bird’s-eye-view Perception: A Review, Evaluation and Recipe - 哈哈哈喽喽喽 - 博客园 (cnblogs.com)

【6】arxiv-sanity (arxiv-sanity-lite.com)

【7】vasgaowei/BEV-Perception: Bird's Eye View Perception (github.com)

References

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏天|여름이다

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值