数学基础之概率论(4)——随机变量的数字特征

数学基础之概率论(4)——随机变量的数字特征

1、数学期望
a. 定义:数学期望本质上就是一个用来描述随机变量取值的平均特征的量。因此,若 X ∼ P { X = x k } = p k , k = 1 , 2 , 3 , . . . X\sim P\{X=x_{k}\}=p_{k},k=1,2,3,... XP{X=xk}=pk,k=1,2,3,...,且 ∑ k = 1 ∞ ∣ x k ∣ p k < ∞ \sum_{k=1}^{\infty}|x_{k}|p_{k}<\infty k=1xkpk<,则称 E ( X ) = ∑ k = 1 ∞ x k p k E(X)=\sum_{k=1}^{\infty}x_{k}p_{k} E(X)=k=1xkpk r . v . X r.v.X r.v.X的数学期望,简称期望或均值。若 X ∼ f ( x ) , − ∞ < x < + ∞ , ∫ − ∞ + ∞ ∣ x ∣ f ( x ) d x < ∞ X\sim f(x),-\infty<x<+\infty,\int_{-\infty}^{+\infty}|x|f(x)dx<\infty Xf(x),<x<+,+xf(x)dx<,则称 E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x E(X)=\int_{-\infty}^{+\infty}xf(x)dx E(X)=+xf(x)dx X X X的数学期望。

b. 0-1分布的数学期望

X X X 1 1 1 0 0 0
P P P p p p 1 − p 1-p 1p

⇒ E ( X ) = p \Rightarrow E(X)=p E(X)=p

c. 二项分布 b ( n , p ) b(n,p) b(n,p)的数学期望
P { X = k } = C n k p k ( 1 − p ) n − k ,    k = 0 , 1 , 2 , . . . , n P\{X=k\}=C_{n}^{k}p^{k}(1-p)^{n-k},\space\space k=0,1,2,...,n P{X=k}=Cnkpk(1p)nk,  k=0,1,2,...,n
⇒ E ( X ) = ∑ k = 1 n k n ! k ! ( n − k ) ! p k ( 1 − p ) n − k \Rightarrow E(X)=\sum_{k=1}^{n}k\frac{n!}{k!(n-k)!}p^{k}(1-p)^{n-k} E(X)=k=1nkk!(nk)!n!pk(1p)nk
= ∑ k = 1 n n ! ( k − 1 ) ! ( n − k ) ! p k ( 1 − p ) n − k =\sum_{k=1}^{n}\frac{n!}{(k-1)!(n-k)!}p^{k}(1-p)^{n-k} =k=1n(k1)!(nk)!n!pk(1p)nk
= n p ∑ k = 1 n ( n − 1 ) ! ( k − 1 ) ! ( n − k ) ! p k − 1 ( 1 − p ) n − 1 − ( k − 1 ) =np\sum_{k=1}^{n}\frac{(n-1)!}{(k-1)!(n-k)!}p^{k-1}(1-p)^{n-1-(k-1)} =npk=1n(k1)!(nk)!(n1)!pk1(1p)n1(k1)
⟹ l = k − 1 n p ∑ l = 0 n − 1 C n − 1 l p l ( 1 − p ) n − 1 − l = n p \stackrel{l=k-1}{\Longrightarrow}np\sum_{l=0}^{n-1}C_{n-1}^{l}p^{l}(1-p)^{n-1-l}=np l=k1npl=0n1Cn1lpl(1p)n1l=np

d. 泊松分布的数学期望
X ∼ P { X = k } = λ k k ! e − λ ,    k = 0 , 1 , 2 , . . . X\sim P\{X=k\}=\frac{\lambda^{k}}{k!}e^{-\lambda},\space\space k=0,1,2,... XP{X=k}=k!λkeλ,  k=0,1,2,...
⇒ E ( X ) = ∑ k = 0 ∞ k λ k k ! e − λ = λ e − λ ∑ k = 1 ∞ λ k − 1 ( k − 1 ) ! = k \Rightarrow E(X)=\sum_{k=0}^{\infty}k\frac{\lambda^{k}}{k!}e^{-\lambda}=\lambda e^{-\lambda}\sum_{k=1}^{\infty}\frac{\lambda^{k-1}}{(k-1)!}=k E(X)=k=0kk!λkeλ=λeλk=1(k1)!λk1=k

e. 均匀分布 U ( a , b ) U(a,b) U(a,b)的数学期望
X ∼ f ( x ) = { 1 b − a ,    a < x < b 0 ,    o t h e r s X\sim f(x)=\begin{cases}\frac{1}{b-a},\space\space a<x<b\\\\0,\space\space others\end{cases} Xf(x)=ba1,  a<x<b0,  others
⇒ E ( X ) = ∫ a b x b − a d x = a + b 2 \Rightarrow E(X)=\int_{a}^{b}\frac{x}{b-a}dx=\frac{a+b}{2} E(X)=abbaxdx=2a+b

f. 指数分布的数学期望
X ∼ f ( x ) = { λ e − λ x ,    x > 0 0 ,    x ⩽ 0 X\sim f(x)=\begin{cases}\lambda e^{-\lambda x},\space\space x>0\\\\0,\space\space x\leqslant0\end{cases} Xf(x)=λeλx,  x>00,  x0
⇒ E ( X ) = ∫ 0 + ∞ x λ e − λ x d x = 1 λ \Rightarrow E(X)=\int_{0}^{+\infty}x\lambda e^{-\lambda x}dx=\frac{1}{\lambda} E(X)=0+xλeλxdx=λ1

g. 正态分布 N ( μ , σ 2 ) N(\mu,\sigma^{2}) N(μ,σ2)的数学期望
X ∼ f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 ,    − ∞ < x < + ∞ X\sim f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}},\space\space-\infty<x<+\infty Xf(x)=2π σ1e2σ2(xμ)2,  <x<+
⇒ E ( X ) = ∫ − ∞ + ∞ x 2 π σ e − ( x − μ ) 2 2 σ 2 d x \Rightarrow E(X)=\int_{-\infty}^{+\infty}\frac{x}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}}dx E(X)=+2π σxe2σ2(xμ)2dx
⟹ t = x − μ σ ∫ − ∞ + ∞ σ t + μ 2 π σ e − t 2 2 σ d t = μ \stackrel{t=\frac{x-\mu}{\sigma}}{\Longrightarrow}\int_{-\infty}^{+\infty}\frac{\sigma t+\mu}{\sqrt{2\pi}\sigma}e^{-\frac{t^{2}}{2}}\sigma dt=\mu t=σxμ+2π σσt+μe2t2σdt=μ

2、随机变量函数的期望
a. X ∼ P { X = x k } = p k , k = 1 , 2 , 3 , . . . X\sim P\{X=x_{k}\}=p_{k},k=1,2,3,... XP{X=xk}=pk,k=1,2,3,...,则 Y = g ( X ) Y=g(X) Y=g(X)的期望 E ( Y ) = E [ g ( X ) ] = ∑ k = 1 + ∞ g ( x k ) p k E(Y)=E[g(X)]=\sum_{k=1}^{+\infty}g(x_{k})p_{k} E(Y)=E[g(X)]=k=1+g(xk)pk,因此,若 ( X , Y ) ∼ P { X = x i , Y = y j } = p i j , i , j = 1 , 2 , 3 , . . . (X,Y)\sim P\{X=x_{i},Y=y_{j}\}=p_{ij},i,j=1,2,3,... (X,Y)P{X=xi,Y=yj}=pij,i,j=1,2,3,...,则 Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y)的期望 E ( Z ) = E [ g ( X , Y ) ] = ∑ j = 1 + ∞ ∑ i = 1 + ∞ g ( x i , y j ) p i j E(Z)=E[g(X,Y)]=\sum_{j=1}^{+\infty}\sum_{i=1}^{+\infty}g(x_{i},y_{j})p_{ij} E(Z)=E[g(X,Y)]=j=1+i=1+g(xi,yj)pij

b. X ∼ f ( x ) , − ∞ < x < + ∞ X\sim f(x),-\infty<x<+\infty Xf(x),<x<+,则 Y = g ( X ) Y=g(X) Y=g(X)的期望 E ( Y ) = E [ g ( X ) ] = ∫ − ∞ + ∞ g ( x ) f ( x ) d x E(Y)=E[g(X)]=\int_{-\infty}^{+\infty}g(x)f(x)dx E(Y)=E[g(X)]=+g(x)f(x)dx,因此,若 ( X , Y ) ∼ f ( x , y ) , − ∞ < x < + ∞ , − ∞ < y < + ∞ (X,Y)\sim f(x,y),-\infty<x<+\infty,-\infty<y<+\infty (X,Y)f(x,y),<x<+,<y<+,则 Z = g ( X , Y ) Z=g(X,Y) Z=g(X,Y)的期望 E ( Z ) = E [ g ( X , Y ) ] = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y E(Z)=E[g(X,Y)]=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)f(x,y)dxdy E(Z)=E[g(X,Y)]=++g(x,y)f(x,y)dxdy

3、数学期望的性质
a. E ( c ) = c , c E(c)=c,c E(c)=c,c为常数;

b. E ( c X ) = c E ( X ) , c E(cX)=cE(X),c E(cX)=cE(X),c为常数;
证明:设 X ∼ f ( x ) X\sim f(x) Xf(x),则
E ( c X ) = ∫ − ∞ + ∞ c x f ( x ) d x = c ∫ − ∞ + ∞ x f ( x ) d x = c E ( X ) E(cX)=\int_{-\infty}^{+\infty}cxf(x)dx=c\int_{-\infty}^{+\infty}xf(x)dx=cE(X) E(cX)=+cxf(x)dx=c+xf(x)dx=cE(X)

c. E ( X + Y ) = E ( X ) + E ( Y ) E(X+Y)=E(X)+E(Y) E(X+Y)=E(X)+E(Y);
证明:设 ( X , Y ) ∼ f ( x , y ) (X,Y)\sim f(x,y) (X,Y)f(x,y),则
E ( X + Y ) E(X+Y) E(X+Y)
= ∫ − ∞ + ∞ ∫ − ∞ + ∞ ( x + y ) f ( x , y ) d x d y =\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}(x+y)f(x,y)dxdy =++(x+y)f(x,y)dxdy
= ∫ − ∞ + ∞ ∫ − ∞ + ∞ x f ( x , y ) d x d y + ∫ − ∞ + ∞ ∫ − ∞ + ∞ y f ( x , y ) d x d y =\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xf(x,y)dxdy+\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}yf(x,y)dxdy =++xf(x,y)dxdy+++yf(x,y)dxdy
= ∫ − ∞ + ∞ x [ ∫ − ∞ + ∞ f ( x , y ) d y ] d x + ∫ − ∞ + ∞ y [ ∫ − ∞ + ∞ f ( x , y ) d x ] d y =\int_{-\infty}^{+\infty}x[\int_{-\infty}^{+\infty}f(x,y)dy]dx+\int_{-\infty}^{+\infty}y[\int_{-\infty}^{+\infty}f(x,y)dx]dy =+x[+f(x,y)dy]dx++y[+f(x,y)dx]dy
= ∫ − ∞ + ∞ x f X ( x ) d x + ∫ − ∞ + ∞ y f Y ( y ) d y =\int_{-\infty}^{+\infty}xf_{X}(x)dx+\int_{-\infty}^{+\infty}yf_{Y}(y)dy =+xfX(x)dx++yfY(y)dy
= E ( X ) + E ( Y ) =E(X)+E(Y) =E(X)+E(Y)

d. X X X Y Y Y独立,则 E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)
证明:设 ( X , Y ) ∼ f ( x , y ) (X,Y)\sim f(x,y) (X,Y)f(x,y),则
E ( X Y ) E(XY) E(XY)
= ∫ − ∞ + ∞ ∫ − ∞ + ∞ x y f ( x , y ) d x d y =\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xyf(x,y)dxdy =++xyf(x,y)dxdy
= ∫ − ∞ + ∞ ∫ − ∞ + ∞ x y f X ( x ) f Y ( y ) d x d y =\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}xyf_{X}(x)f_{Y}(y)dxdy =++xyfX(x)fY(y)dxdy
∫ − ∞ + ∞ x f X ( x ) d x ∫ − ∞ + ∞ y f Y ( y ) d y \int_{-\infty}^{+\infty}xf_{X}(x)dx\int_{-\infty}^{+\infty}yf_{Y}(y)dy +xfX(x)dx+yfY(y)dy
= E ( X ) E ( Y ) =E(X)E(Y) =E(X)E(Y)

4、方差
a. 方差本质上是衡量随机变量取值波动程度的一个数字特征。若 E [ X − E ( X ) ] 2 E[X-E(X)]^{2} E[XE(X)]2存在,则称 E [ X − E ( X ) ] 2 E[X-E(X)]^{2} E[XE(X)]2 r . v . X r.v.X r.v.X的方差,记为 D ( X ) D(X) D(X) V a r ( X ) Var(X) Var(X),称 σ ( X ) = D ( X ) \sigma(X)=\sqrt{D(X)} σ(X)=D(X) r . v . X r.v.X r.v.X的标准差或均方差。可见
D ( X ) = { ∑ k = 1 + ∞ [ x k − E ( X ) ] 2 P { X = x k } ,    离 散 型 ∫ − ∞ + ∞ [ x − E ( X ) ] 2 f ( x ) d x ,    连 续 型 D(X)=\begin{cases}\sum_{k=1}^{+\infty}[x_{k}-E(X)]^{2}P\{X=x_{k}\},\space\space离散型\\\\\int_{-\infty}^{+\infty}[x-E(X)]^{2}f(x)dx,\space\space连续型\end{cases} D(X)=k=1+[xkE(X)]2P{X=xk},  +[xE(X)]2f(x)dx,  

b. 推论: D ( X ) = E ( X 2 ) − [ E ( X ) ] 2 D(X)=E(X^{2})-[E(X)]^{2} D(X)=E(X2)[E(X)]2
证明: D ( X ) = E [ X − E ( X ) ] 2 D(X)=E[X-E(X)]^{2} D(X)=E[XE(X)]2
= E { X 2 − 2 X E ( X ) + [ E ( X ) ] 2 } =E\{X^{2}-2XE(X)+[E(X)]^{2}\} =E{X22XE(X)+[E(X)]2}
= E ( X 2 ) − 2 E ( X ) E ( X ) + [ E ( X ) ] 2 =E(X^{2})-2E(X)E(X)+[E(X)]^{2} =E(X2)2E(X)E(X)+[E(X)]2
= E ( X 2 ) − [ E ( X ) ] 2 =E(X^{2})-[E(X)]^{2} =E(X2)[E(X)]2

c. 二项分布 b ( n , p ) b(n,p) b(n,p)的方差
P { X = k } = C n k p k ( 1 − p ) n − k ,    k = 0 , 1 , 2 , … , n P\{X=k\}=C_{n}^{k}p_{k}(1-p)^{n-k},\space\space k=0,1,2,\dots,n P{X=k}=Cnkpk(1p)nk,  k=0,1,2,,n
E ( X ) = n p E(X)=np E(X)=np
⇒ E ( X 2 ) \Rightarrow E(X^{2}) E(X2)
= ∑ k = 1 n k 2 n ! k ! ( n − k ) ! p k ( 1 − p ) n − k =\sum_{k=1}^{n}k^{2}\frac{n!}{k!(n-k)!}p^{k}(1-p)^{n-k} =k=1nk2k!(nk)!n!pk(1p)nk
= ∑ k = 1 n k n ! ( k − 1 ) ! ( n − k ) ! p k ( 1 − p ) n − k =\sum_{k=1}^{n}\frac{kn!}{(k-1)!(n-k)!}p^{k}(1-p)^{n-k} =k=1n(k1)!(nk)!kn!pk(1p)nk
= ∑ k = 1 n ( k − 1 + 1 ) n ! ( k − 1 ) ! ( n − k ) ! p k ( 1 − p ) n − k =\sum_{k=1}^{n}\frac{(k-1+1)n!}{(k-1)!(n-k)!}p^{k}(1-p)^{n-k} =k=1n(k1)!(nk)!(k1+1)n!pk(1p)nk
= ∑ k = 1 n ( k − 1 ) n ! ( k − 1 ) ! ( n − k ) ! p k ( 1 − p ) n − k + ∑ k = 1 n n ! ( k − 1 ) ! ( n − k ) ! p k ( 1 − p ) n − k =\sum_{k=1}^{n}\frac{(k-1)n!}{(k-1)!(n-k)!}p^{k}(1-p)^{n-k}+\sum_{k=1}^{n}\frac{n!}{(k-1)!(n-k)!}p^{k}(1-p)^{n-k} =k=1n(k1)!(nk)!(k1)n!pk(1p)nk+k=1n(k1)!(nk)!n!pk(1p)nk
= ∑ k = 2 n n ! ( k − 2 ) ! ( n − k ) ! p k ( 1 − p ) n − k + ∑ k = 1 n n ! ( k − 1 ) ! ( n − k ) ! p k ( 1 − p ) n − k =\sum_{k=2}^{n}\frac{n!}{(k-2)!(n-k)!}p^{k}(1-p)^{n-k}+\sum_{k=1}^{n}\frac{n!}{(k-1)!(n-k)!}p^{k}(1-p)^{n-k} =k=2n(k2)!(nk)!n!pk(1p)nk+k=1n(k1)!(nk)!n!pk(1p)nk
= ∑ l = 0 n − 2 n ( n − 1 ) C n − 2 l p l + 2 ( 1 − p ) n − 2 − l + ∑ j = 0 n − 1 n C n − 1 j p j + 1 ( 1 − p ) n − 1 − j =\sum_{l=0}^{n-2}n(n-1)C_{n-2}^{l}p^{l+2}(1-p)^{n-2-l}+\sum_{j=0}^{n-1}nC_{n-1}^{j}p^{j+1}(1-p)^{n-1-j} =l=0n2n(n1)Cn2lpl+2(1p)n2l+j=0n1nCn1jpj+1(1p)n1j
= n ( n − 1 ) p 2 + n p =n(n-1)p^{2}+np =n(n1)p2+np
∴    D ( X ) = n ( n − 1 ) p 2 + n p − n 2 p 2 = n p ( 1 − p ) \therefore\space\space D(X)=n(n-1)p^{2}+np-n^{2}p^{2}=np(1-p)   D(X)=n(n1)p2+npn2p2=np(1p)

d. 泊松分布 π ( λ ) \pi(\lambda) π(λ)的方差
X ∼ P { X = k } = λ k k ! e − λ ,    k = 0 , 1 , 2 , … X\sim P\{X=k\}=\frac{\lambda^{k}}{k!}e^{-\lambda},\space\space k=0,1,2,\dots XP{X=k}=k!λkeλ,  k=0,1,2,
E ( X ) = λ E(X)=\lambda E(X)=λ
⇒ D ( X ) = λ \Rightarrow D(X)=\lambda D(X)=λ

e. 均匀分布 U ( a , b ) U(a,b) U(a,b)的方差
X ∼ f ( x ) = { 1 b − a ,    a < x < b 0 ,    o t h e r s X\sim f(x)=\begin{cases}\frac{1}{b-a},\space\space a<x<b\\\\0,\space\space others\end{cases} Xf(x)=ba1,  a<x<b0,  others
E ( X ) = a + b 2 E(X)=\frac{a+b}{2} E(X)=2a+b
⇒ D ( X ) = ( b − a ) 2 12 \Rightarrow D(X)=\frac{(b-a)^{2}}{12} D(X)=12(ba)2

f. 指数分布的方差
X ∼ f ( x ) = { λ e − λ x ,    x > 0 0 ,    x ⩽ 0 X\sim f(x)=\begin{cases}\lambda e^{-\lambda x},\space\space x>0\\\\0,\space\space x\leqslant0\end{cases} Xf(x)=λeλx,  x>00,  x0
E ( X ) = 1 λ E(X)=\frac{1}{\lambda} E(X)=λ1
⇒ D ( X ) = 1 λ 2 \Rightarrow D(X)=\frac{1}{\lambda^{2}} D(X)=λ21

g. 正态分布 N ( μ , σ 2 ) N(\mu,\sigma^{2}) N(μ,σ2)的方差
X ∼ f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 ,    − ∞ < x < + ∞ X\sim f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^{2}}{2\sigma^{2}}},\space\space-\infty<x<+\infty Xf(x)=2π σ1e2σ2(xμ)2,  <x<+
E ( X ) = μ E(X)=\mu E(X)=μ
⇒ D ( X ) = σ 2 \Rightarrow D(X)=\sigma^{2} D(X)=σ2

5、方差的性质
a. D ( c ) = 0 , c D(c)=0,c D(c)=0,c为常数。反之,若 D ( X ) = 0 D(X)=0 D(X)=0,则存在常数 c c c,使 P { X = c } = 1 P\{X=c\}=1 P{X=c}=1

b. D ( a X ) = a 2 D ( X ) D(aX)=a^{2}D(X) D(aX)=a2D(X) a a a为常数;
证明: D ( a X ) D(aX) D(aX)
= E ( a 2 X 2 ) − [ E ( a X ) ] 2 =E(a^{2}X^{2})-[E(aX)]^{2} =E(a2X2)[E(aX)]2
= a 2 E ( X 2 ) − [ a E ( X ) ] 2 =a^{2}E(X^{2})-[aE(X)]^{2} =a2E(X2)[aE(X)]2
= a 2 { E ( X 2 ) − [ E ( X ) ] 2 } =a^{2}\{E(X^{2})-[E(X)]^{2}\} =a2{E(X2)[E(X)]2}
= a 2 D ( X ) =a^{2}D(X) =a2D(X)

c. X , Y X,Y X,Y独立,则 D ( X + Y ) = D ( X ) + D ( Y ) D(X+Y)=D(X)+D(Y) D(X+Y)=D(X)+D(Y)
证明: D ( X + Y ) D(X+Y) D(X+Y)
= E [ ( X + Y ) 2 ] − [ E ( X + Y ) ] 2 =E[(X+Y)^{2}]-[E(X+Y)]^{2} =E[(X+Y)2][E(X+Y)]2
= E { X 2 + 2 X Y + Y 2 } − { [ E ( X ) ] 2 + 2 E ( X ) E ( Y ) + [ E ( Y ) ] 2 } =E\{X^{2}+2XY+Y^{2}\}-\{[E(X)]^{2}+2E(X)E(Y)+[E(Y)]^{2}\} =E{X2+2XY+Y2}{[E(X)]2+2E(X)E(Y)+[E(Y)]2}
= D ( X ) + D ( Y ) + 2 E ( X Y ) − 2 E ( X ) E ( Y ) =D(X)+D(Y)+2E(XY)-2E(X)E(Y) =D(X)+D(Y)+2E(XY)2E(X)E(Y)
X X X Y Y Y独立 ⇒ \Rightarrow E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)
∴    D ( X + Y ) = D ( X ) + D ( Y ) \therefore\space\space D(X+Y)=D(X)+D(Y)   D(X+Y)=D(X)+D(Y)
推广一下,若 X 1 , X 2 , … , X n X_{1},X_{2},\dots,X_{n} X1,X2,,Xn独立,则
D ( ∑ i = 1 n X i ) = ∑ i = 1 n D ( X i ) D(\sum_{i=1}^{n}X_{i})=\sum_{i=1}^{n}D(X_{i}) D(i=1nXi)=i=1nD(Xi)

6、切比雪夫不等式
r . v . X r.v.X r.v.X的期望和方差存在,则对任意 ε > 0 \varepsilon>0 ε>0,有
P { ∣ X − E ( X ) ∣ ⩾ ε } ⩽ D ( X ) ε 2 P\{|X-E(X)|\geqslant\varepsilon\}\leqslant\frac{D(X)}{\varepsilon^{2}} P{XE(X)ε}ε2D(X)
上式等价于 P { ∣ X − E ( X ) ∣ < ε } ⩾ 1 − D ( X ) ε 2 P\{|X-E(X)|<\varepsilon\}\geqslant1-\frac{D(X)}{\varepsilon^{2}} P{XE(X)<ε}1ε2D(X)

7、协方差
a. 定义:若 r . v . X r.v.X r.v.X的期望 E ( X ) E(X) E(X) Y Y Y的期望 E ( Y ) E(Y) E(Y)存在,则称 C o v ( X , Y ) = E { [ X − E ( X ) ] [ Y − E ( Y ) ] } Cov(X,Y)=E\{[X-E(X)][Y-E(Y)]\} Cov(X,Y)=E{[XE(X)][YE(Y)]} X X X Y Y Y的协方差,易知 C o v ( X , Y ) = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E(XY)-E(X)E(Y) Cov(X,Y)=E(XY)E(X)E(Y)

b. 性质:
( 1 ) (1) (1) C o v ( X , Y ) = C o v ( Y , X ) Cov(X,Y)=Cov(Y,X) Cov(X,Y)=Cov(Y,X)
( 2 ) (2) (2) C o v ( X , X ) = D ( X ) ,    C o v ( X , c ) = 0 Cov(X,X)=D(X),\space\space Cov(X,c)=0 Cov(X,X)=D(X),  Cov(X,c)=0
( 3 ) (3) (3) C o v ( a X , b Y ) = a b C o v ( X , Y ) Cov(aX,bY)=abCov(X,Y) Cov(aX,bY)=abCov(X,Y),其中 a , b a,b a,b为常数;
( 4 ) (4) (4) C o v ( X + Y , Z ) = C o v ( X , Z ) + C o v ( Y , Z ) Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Z) Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Z)
( 5 ) (5) (5) D ( X ± Y ) = D ( X ) + D ( Y ) ± 2 C o v ( X , Y ) D(X\pm Y)=D(X)+D(Y)\pm2Cov(X,Y) D(X±Y)=D(X)+D(Y)±2Cov(X,Y)
( 6 ) (6) (6) [ C o v ( X , Y ) ] 2 ⩽ D ( X ) D ( Y ) [Cov(X,Y)]^{2}\leqslant D(X)D(Y) [Cov(X,Y)]2D(X)D(Y)

8、相关系数
a. 定义:若 r . v . X r.v.X r.v.X的方差和协方差均存在,且 D ( X ) > 0 , D ( Y ) > 0 D(X)>0,D(Y)>0 D(X)>0,D(Y)>0,则 ρ = ρ X Y = C o v ( X , Y ) D ( X ) D ( Y ) \rho=\rho_{XY}=\frac{Cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}} ρ=ρXY=D(X) D(Y) Cov(X,Y)称为 X X X Y Y Y的相关系数。

b. 性质:
( 1 ) (1) (1) ∣ ρ X Y ∣ ⩽ 1 |\rho_{XY}|\leqslant1 ρXY1
( 2 ) (2) (2) ∣ ρ X Y ∣ = 1 ⇔ |\rho_{XY}|=1\Leftrightarrow ρXY=1 存在常数 a , b a,b a,b,使 P { Y = a X + b } = 1 P\{Y=aX+b\}=1 P{Y=aX+b}=1
( 3 ) (3) (3) X X X Y Y Y不相关 ⇔ ρ X Y = 0 \Leftrightarrow\rho_{XY}=0 ρXY=0(与独立相区分)。
注意:若 ( X , Y ) (X,Y) (X,Y)服从二维正态分布,则 X X X Y Y Y独立的充要条件是 X X X Y Y Y不相关。

9、矩与协方差矩阵
a. K K K阶(原点)矩: E ( X k ) , k = 1 , 2 , 3 , … E(X^{k}),k=1,2,3,\dots E(Xk),k=1,2,3,

b. K K K阶中心矩: E [ X − E ( X ) ] k , k = 2 , 3 , 4 , … E[X-E(X)]^{k},k=2,3,4,\dots E[XE(X)]k,k=2,3,4,

c. K + I K+I K+I阶混合原点矩: E ( X k Y i ) , k , i = 1 , 2 , 3 , … E(X^{k}Y^{i}),k,i=1,2,3,\dots E(XkYi),k,i=1,2,3,

d. K + I K+I K+I阶混合中心矩: E { [ X − E ( X ) ] k [ Y − E ( Y ) ] i } , k , i = 1 , 2 , 3 , … E\{[X-E(X)]^{k}[Y-E(Y)]^{i}\},k,i=1,2,3,\dots E{[XE(X)]k[YE(Y)]i},k,i=1,2,3,

e. X = ( X 1 , X 2 , … , X n ) T X=(X_{1},X_{2},\dots,X_{n})^{T} X=(X1,X2,,Xn)T n n n r . v . r.v. r.v.,则称 E ( X ) = ( E ( X 1 ) , E ( X 2 ) , … , E ( X n ) ) T E(X)=(E(X_{1}),E(X_{2}),\dots,E(X_{n}))^{T} E(X)=(E(X1),E(X2),,E(Xn))T为其期望向量。

f. X 1 , X 2 , … , X n X_{1},X_{2},\dots,X_{n} X1,X2,,Xn n n n r . v . r.v. r.v.,记 c i j = C o v ( X i , Y j ) , i , j = 1 , 2 , 3 , … , n c_{ij}=Cov(X_{i},Y_{j}),i,j=1,2,3,\dots,n cij=Cov(Xi,Yj),i,j=1,2,3,,n,则称由 c i j c_{ij} cij组成的矩阵为随机变量 X 1 , X 2 , … , X n X_{1},X_{2},\dots,X_{n} X1,X2,,Xn的协方差矩阵 C C C,即
C = ( c i j ) n × n = [ c 11 c 12 … c 1 n c 21 c 22 … c 2 n … … … … c n 1 c n 2 … c n n ] C=(c_{ij})_{n\times n}=\left[\begin{matrix}c_{11} &c_{12}&\dots&c_{1n}\\\\c_{21}&c_{22}&\dots&c_{2n}\\\\\dots&\dots&\dots&\dots\\\\c_{n1}&c_{n2}&\dots&c_{nn}\end{matrix}\right] C=(cij)n×n=c11c21cn1c12c22cn2c1nc2ncnn

10、 n n n维正态分布
a. 相互独立正态随机变量的线性组合还是正态随机变量,即若 X 1 , X 2 , … , X n X_{1},X_{2},\dots,X_{n} X1,X2,,Xn相互独立,且 X i ∼ N ( μ i , σ i ) , i = 1 , 2 , 3 , … , n X_{i}\sim N(\mu_{i},\sigma_{i}),i=1,2,3,\dots,n XiN(μi,σi),i=1,2,3,,n,则对任意常数 α 1 , α 2 , … , α n \alpha_{1},\alpha_{2},\dots,\alpha_{n} α1,α2,,αn,有
∑ i = 1 n α i X i ∼ N ( ∑ i = 1 n α i μ i , ∑ i = 1 n α i 2 σ i 2 ) \sum_{i=1}^{n}\alpha_{i}X_{i}\sim N(\sum_{i=1}^{n}\alpha_{i}\mu_{i},\sum_{i=1}^{n}\alpha_{i}^{2}\sigma_{i}^{2}) i=1nαiXiN(i=1nαiμi,i=1nαi2σi2)

b. r . v . ( X 1 , X 2 , … , X n ) T r.v.(X_{1},X_{2},\dots,X_{n})^{T} r.v.(X1,X2,,Xn)T服从 n n n维正态分布的充要条件是 X 1 , X 2 , … , X n X_{1},X_{2},\dots,X_{n} X1,X2,,Xn的任意线性组合 I 1 X 1 + I 2 X 2 + ⋯ + I n X n I_{1}X_{1}+I_{2}X_{2}+\dots+I_{n}X_{n} I1X1+I2X2++InXn服从一维正态分布。

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值