概率论——随机变量和的期望

随机变量和的期望

  期望有一个非常重要的性质:一组随机变量的和的期望与这组随机变量各自期望的和相等。
  假设样本空间 S S S是一个有限的或者可数无限的集合(没有这个前提上述性质也成立,假设前提可以使讨论更清晰简单),给定一个随机变量 X X X,当 s ∈ S s \in S sS时( s s s表示一次试验结果), X ( s ) X(s) X(s)表示此时随机变量 X X X的取值。现在,给定这样的随机变量 X X X Y Y Y,那么他们的和仍然是随机变量,即 Z = X + Y Z = X + Y Z=X+Y是随机变量,并且有 Z ( s ) = X ( s ) + Y ( s ) Z(s) = X(s) + Y(s) Z(s)=X(s)+Y(s)

1 从另一种角度求期望

  现令 p ( s ) = P ( { s } ) p(s) = P(\{s\}) p(s)=P({s})表示作为随机试验的结果的概率。由于任意事件 A A A都可以写成有限个或者可数无限个互不相容的事件 { s } \{s\} {s}的和, s ∈ A s\in A sA,根据概率论公理可得:
P ( A ) = ∑ s ∈ A p ( s ) P(A) = \sum_{s\in A}p(s) P(A)=sAp(s)
A = S A = S A=S时, 上式等价于:
P ( S ) = 1 = ∑ s ∈ S p ( s ) P(S) = 1 = \sum_{s\in S}p(s) P(S)=1=sSp(s)
现在考虑随机变量 X X X的期望 E [ X ] E[X] E[X]。由于 X ( s ) X(s) X(s)表示当 s s s作为试验结果时 X X X的取值,那是不是可以猜测: E [ X ] E[X] E[X]表示随机变量 X X X的可能取值的加权平均,其中 X X X的每个可能取值的权重为其取到试验结果的概率,即 E [ X ] E[X] E[X]应该等于 X ( s ) , s ∈ S X(s),s\in S X(s),sS的加权平均,权重为 p ( s ) p(s) p(s)
E [ X ] = ∑ s ∈ S X ( s ) p ( s ) E[X] = \sum_{s\in S}X(s)p(s) E[X]=sSX(s)p(s)
下面来证明这个猜测,从我们之前对期望的求法入手,假设随机变量 X X X的不同取值为 x i ( i ≥ 1 ) x_i(i \ge1) xi(i1),对于每一个 i i i,令 S i S_i Si表示 X X X等于 x i x_i xi时的事件,即 S i = { s : X ( s ) = x i } S_i = \{s:X(s)=x_i\} Si={s:X(s)=xi},那么:
E [ X ] = ∑ i x i P { X = x i } = ∑ i x i P ( S i ) = ∑ i x i ∑ s ∈ S i p ( s ) = ∑ i ∑ s ∈ S i X ( s ) p ( s ) = ∑ s ∈ S X ( s ) p ( s ) \begin{aligned} E[X] &= \sum_ix_iP\{X= x_i\} \\ &= \sum_ix_iP(S_i)\\ &= \sum_ix_i \sum_{s\in S_i}p(s)\\ &= \sum_i\sum_{s\in S_i}X(s)p(s)\\ &= \sum_{s\in S}X(s)p(s) \end{aligned} E[X]=ixiP{X=xi}=ixiP(Si)=ixisSip(s)=isSiX(s)p(s)=sSX(s)p(s)
得证,最后一个等号成立是因为 S 1 , S 2 ⋯ S_1,S_2\cdots S1,S2是组成 S S S的互不相容的事件。

2 重要性质的证明

  现在根据我们得到的期望的求法,来证明上面期望的重要性质——一组随机变量的和的期望与这组随机变量各自期望的和相等。即证明对于随机变量 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots ,X_n X1,X2,,Xn,有:
E [ ∑ i = 1 n X i ] = ∑ i = 1 n E [ X i ] E[\sum_{i=1}^nX_i] = \sum_{i=1}^nE[X_i] E[i=1nXi]=i=1nE[Xi]
证明非常简单,利用上面的结论就好了,记 Z = ∑ i = 1 n X i Z = \sum_{i=1}^nX_i Z=i=1nXi,则有:
E [ Z ] = ∑ s ∈ S Z ( s ) p ( s ) = ∑ s ∈ S ( X 1 ( s ) + X 2 ( s ) + ⋯ + X n ( s ) ) p ( s ) = ∑ s ∈ S X 1 ( s ) p ( s ) + ∑ s ∈ S X 2 ( s ) p ( s ) + ⋯ + ∑ s ∈ S X n ( s ) p ( s ) = E [ X 1 ] + E [ X 2 ] + ⋯ + E [ X n ] \begin{aligned} E[Z]&= \sum_{s\in S}Z(s)p(s)\\ &= \sum_{s\in S}(X_1(s) + X_2(s) +\cdots + X_n(s))p(s)\\ &=\sum_{s\in S}X_1(s)p(s) + \sum_{s\in S}X_2(s)p(s) + \cdots + \sum_{s\in S}X_n(s)p(s)\\ &=E[X_1] + E[X_2] + \cdots + E[X_n] \end{aligned} E[Z]=sSZ(s)p(s)=sS(X1(s)+X2(s)++Xn(s))p(s)=sSX1(s)p(s)+sSX2(s)p(s)++sSXn(s)p(s)=E[X1]+E[X2]++E[Xn]
得证。

参考资料:《概率论基础教程》Sheldon M.Ross

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在Python中,可以使用概率论中的随机变量分布来进行统计计算。常见的离散型分布包括二项分布和泊松分布,连续性分布包括正态分布、均匀分布和指数分布等。这些分布可以用来计算概率、期望和方差等统计量。 对于正态分布,可以使用scipy.stats库中的norm模块进行计算。例如,可以使用norm.cdf函数计算小于某个值的概率,使用norm.ppf函数计算给定累积概率时的反函数值。代码示例如下: ``` from scipy.stats import norm # 计算小于40的概率 p1 = norm.cdf(40, loc=50, scale=10) # 计算30到40之间的概率 p2 = norm.cdf(40, loc=50, scale=10) - norm.cdf(30, loc=50, scale=10) # 计算小于2.5的概率 p3 = norm.cdf(2.5, 0, 1) # 计算-1.5到2之间的概率 p4 = norm.cdf(2) - norm.cdf(-1.5) # 计算累计概率为0.025时的反函数值 q1 = norm.ppf(0.025, loc=0, scale=1) # 计算累计概率为0.975时的反函数值 q2 = norm.ppf(0.975, 0, 1) print(p1, p2, p3, p4, q1, q2) ``` 对于计算随机变量的概率分布的均值和方差,可以使用numpy库进行计算。代码示例如下: ``` import numpy as np # 假设有一个数据框df,其中包含了不合格品数和概率 mymean = sum(df['不合格品数'] * df['概率']) # 计算均值 myvar = sum((df['不合格品数'] - mymean) ** 2 * df['概率']) # 计算方差 mystd = np.sqrt(myvar) # 计算标准差 print(mymean, myvar, mystd) ``` 以上是关于Python统计学中随机变量的概率分布的一些基本操作和计算方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Python统计学03——随机变量的概率分布](https://blog.csdn.net/weixin_46277779/article/details/126673517)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值