数学基础之概率论(5)——大数定律与中心极限定理

数学基础之概率论(5)——大数定律与中心极限定理

1、切比雪夫定理(特殊)
a. 定理:设随机变量 X 1 , X 2 , … , X n , … X_{1},X_{2},\dots,X_{n},\dots X1,X2,,Xn,相互独立,且具有相同的数学期望和方差: E ( X k ) = μ , D ( X k ) = σ 2 ( k = 1 , 2 , 3 , …   ) E(X_{k})=\mu,D(X_{k})=\sigma^{2}(k=1,2,3,\dots) E(Xk)=μ,D(Xk)=σ2(k=1,2,3,),作前 n n n个随机变量的算术平均 X ‾ = 1 n ∑ k = 1 n X k \overline{X}=\frac{1}{n}\sum_{k=1}^{n}X_{k} X=n1k=1nXk,则对于任意正数 ε \varepsilon ε
lim ⁡ n → ∞ P { ∣ X ‾ − μ ∣ < ε } = lim ⁡ n → ∞ P { ∣ 1 n ∑ k = 1 n X k − μ ∣ < ε } = 1 \lim_{n\to\infty}P\{|\overline{X}-\mu|<\varepsilon\}=\lim_{n\to\infty}P\{|\frac{1}{n}\sum_{k=1}^{n}X_{k}-\mu|<\varepsilon\}=1 limnP{Xμ<ε}=limnP{n1k=1nXkμ<ε}=1

b. 表达式含义: { ∣ X ‾ − μ ∣ < ε } \{|\overline{X}-\mu|<\varepsilon\} {Xμ<ε}是一个随机事件,等式表明,当 n → ∞ n\to\infty n时,这个事件的概率趋于 1 1 1,即对于任意正数 ε \varepsilon ε,当 n n n充分大时,不等式 ∣ X ‾ − μ ∣ < ε |\overline{X}-\mu|<\varepsilon Xμ<ε成立的概率很大。

c. 定理证明:
E ( 1 n ∑ k = 1 n X k ) = 1 n ∑ k = 1 n E ( X k ) = 1 n ⋅ n μ = μ , E(\frac{1}{n}\sum_{k=1}^{n}X_{k})=\frac{1}{n}\sum_{k=1}^{n}E(X_{k})=\frac{1}{n}\cdot n\mu=\mu, E(n1k=1nXk)=n1k=1nE(Xk)=n1nμ=μ,
D ( 1 n ∑ k = 1 n X k ) = 1 n 2 ∑ k = 1 n D ( X k ) = 1 n 2 ⋅ n σ 2 = σ 2 n , D(\frac{1}{n}\sum_{k=1}^{n}X_{k})=\frac{1}{n^{2}}\sum_{k=1}^{n}D(X_{k})=\frac{1}{n^{2}}\cdot n\sigma^{2}=\frac{\sigma^{2}}{n}, D(n1k=1nXk)=n21k=1nD(Xk)=n21nσ2=nσ2,
由切比雪夫不等式可得
P { ∣ 1 n ∑ k = 1 n X k − μ ∣ < ε } ⩾ 1 − σ 2 ε 2 n , P\{|\frac{1}{n}\sum_{k=1}^{n}X_{k}-\mu|<\varepsilon\}\geqslant1-\frac{\sigma^{2}}{\varepsilon^{2}n}, P{n1k=1nXkμ<ε}1ε2nσ2,
在上式中令 n → ∞ n\to\infty n,并注意到概率不能大于 1 1 1,则
P { ∣ 1 n ∑ k = 1 n X k − μ ∣ < ε } = 1 P\{|\frac{1}{n}\sum_{k=1}^{n}X_{k}-\mu|<\varepsilon\}=1 P{n1k=1nXkμ<ε}=1

d. 定理说明:
n n n很大时,随机变量 X 1 , X 2 , … , X n X_{1},X_{2},\dots,X_{n} X1,X2,,Xn的算术平均 1 n ∑ k = 1 n X k \frac{1}{n}\sum_{k=1}^{n}X_{k} n1k=1nXk接近于数学期望 E ( X 1 ) = E ( X 2 ) = ⋯ = E ( X k ) = μ , E(X_{1})=E(X_{2})=\cdots=E(X_{k})=\mu, E(X1)=E(X2)==E(Xk)=μ,(这个接近指概率意义下的接近),即在定理条件下, n n n个随机变量的算术平均,当 n n n无限增加时,几乎变为一个常数。因此,该定理还可以如此叙述:
设随机变量 X 1 , X 2 , … , X n , … X_{1},X_{2},\dots,X_{n},\dots X1,X2,,Xn,相互独立,且具有相同的数学期望和方差: E ( X k ) = μ , D ( X k ) = σ 2 ( k = 1 , 2 , 3 , …   ) E(X_{k})=\mu,D(X_{k})=\sigma^{2}(k=1,2,3,\dots) E(Xk)=μ,D(Xk)=σ2(k=1,2,3,),则 X 1 , X 2 , … , X n ( n → ∞ ) X_{1},X_{2},\dots,X_{n}(n\to\infty) X1,X2,,Xn(n)依概率收敛于 μ \mu μ。(“依概率收敛”:设 Y 1 , Y 2 , … , Y n Y_{1},Y_{2},\dots,Y_{n} Y1,Y2,,Yn是一个随机变量序列, a a a是一个常数,若对于任意正数 ε \varepsilon ε lim ⁡ n → ∞ P { ∣ Y n − a ∣ < ε } = 1 \lim_{n\to\infty}P\{|Y_{n}-a|<\varepsilon\}=1 limnP{Yna<ε}=1,则称序列 Y 1 , Y 2 , … , Y n Y_{1},Y_{2},\dots,Y_{n} Y1,Y2,,Yn依概率收敛于 a a a,记为 Y n ⟶ p a Y_{n}\stackrel{p}{\longrightarrow}a Ynpa

e. 依概率收敛序列的性质:
X n ⟶ p a , Y n ⟶ p b X_{n}\stackrel{p}{\longrightarrow}a,Y_{n}\stackrel{p}{\longrightarrow}b Xnpa,Ynpb,又设函数 g ( x , y ) g(x,y) g(x,y)在点 ( a , b ) (a,b) (a,b)连续,则 g ( X n , Y n ) ⟶ p g ( a , b ) g(X_{n},Y_{n})\stackrel{p}{\longrightarrow}g(a,b) g(Xn,Yn)pg(a,b)
证明: ∵ g ( x , y ) \because g(x,y) g(x,y) ( a , b ) (a,b) (a,b)连续, ∀ ε > 0 , ∃ δ > 0 , s . t . \forall\varepsilon>0,\exist\delta>0,s.t. ε>0,δ>0,s.t. ∣ x − a ∣ + ∣ y − b ∣ < δ |x-a|+|y-b|<\delta xa+yb<δ时, ∣ g ( x , y ) − g ( a , b ) ∣ < ε , |g(x,y)-g(a,b)|<\varepsilon, g(x,y)g(a,b)<ε,
∴ { ∣ g ( X n , Y n ) − g ( a , b ) ∣ ⩾ ε } ⊂ { ∣ X a − a ∣ + ∣ Y n − b ∣ ⩾ δ } ⊂ { ∣ X n − a ∣ ⩾ δ 2 } ∪ { ∣ Y n − b ∣ ⩾ δ 2 } , \therefore\{|g(X_{n},Y_{n})-g(a,b)|\geqslant\varepsilon\}\subset\{|X_{a}-a|+|Y_{n}-b|\geqslant\delta\}\subset\{|X_{n}-a|\geqslant\frac{\delta}{2}\}\cup\{|Y_{n}-b|\geqslant\frac{\delta}{2}\}, {g(Xn,Yn)g(a,b)ε}{Xaa+Ynbδ}{Xna2δ}{Ynb2δ},
∴ P { ∣ g ( X n , Y n ) − g ( a , b ) ∣ ⩾ ε } ⩽ P { ∣ X n − a ∣ ⩾ δ 2 } + P { ∣ Y n − b ∣ ⩾ δ 2 } ⟶ n → ∞ 0 , \therefore P\{|g(X_{n},Y_{n})-g(a,b)|\geqslant\varepsilon\}\leqslant P\{|X_{n}-a|\geqslant\frac{\delta}{2}\}+P\{|Y_{n}-b|\geqslant\frac{\delta}{2}\}\stackrel{n\to\infty}{\longrightarrow}0, P{g(Xn,Yn)g(a,b)ε}P{Xna2δ}+P{Ynb2δ}n0,
∴ lim ⁡ n → ∞ P { ∣ g ( X n , Y n ) − g ( a , b ) ∣ < ε } = 1 \therefore\lim_{n\to\infty}P\{|g(X_{n},Y_{n})-g(a,b)|<\varepsilon\}=1 limnP{g(Xn,Yn)g(a,b)<ε}=1,证毕。

2、贝努利大数定理
a. 定理:设 n A n_{A} nA n n n次独立重复试验中事件 A A A发生的次数, p p p是事件 A A A在每次试验中发生的概率,则对于任意正数 ε > 0 \varepsilon>0 ε>0,有 lim ⁡ n → ∞ P { ∣ n A n − p ∣ < ε } = 1 \lim_{n\to\infty}P\{|\frac{n_{A}}{n}-p|<\varepsilon\}=1 limnP{nnAp<ε}=1 lim ⁡ n → ∞ P { ∣ n A n − p ∣ ⩾ ε } = 0 \lim_{n\to\infty}P\{|\frac{n_{A}}{n}-p|\geqslant\varepsilon\}=0 limnP{nnApε}=0

b. 定理证明:
引入随机变量 X k = { 0 1 X_{k}=\begin{cases}0\\\\1\end{cases} Xk=01 0 0 0 代表在第 k k k次试验中 A A A不发生, 1 1 1 则代表发生, k = 1 , 2 , 3 , … k=1,2,3,\dots k=1,2,3,
显然, n A = X 1 + X 2 + ⋯ + X n , n_{A}=X_{1}+X_{2}+\cdots+X_{n}, nA=X1+X2++Xn,
∵ X 1 , X 2 , … , X n \because X_{1},X_{2},\dots,X_{n} X1,X2,,Xn是相互独立的,且 X k X_{k} Xk服从以 p p p为参数的(0-1)分布,
∴ E ( X k ) = p , D ( X k ) = p ( 1 − p ) , k = 1 , 2 , 3 , … , \therefore E(X_{k})=p,D(X_{k})=p(1-p),k=1,2,3,\dots, E(Xk)=p,D(Xk)=p(1p),k=1,2,3,,
∴ \therefore 根据切比雪夫定理,有 P { ∣ 1 n ( X 1 + X 2 + ⋯ + X n ) − p ∣ < ε } = 1 P\{|\frac{1}{n}(X_{1}+X_{2}+\cdots+X_{n})-p|<\varepsilon\}=1 P{n1(X1+X2++Xn)p<ε}=1,即 lim ⁡ n → ∞ P { ∣ n A n − p ∣ < ε } = 1 \lim_{n\to\infty}P\{|\frac{n_{A}}{n}-p|<\varepsilon\}=1 limnP{nnAp<ε}=1

c. 定理说明:
贝努利定理表明事件发生的频率 n A n \frac{n_{A}}{n} nnA依概率收敛于事件的概率 p p p,它以严格的数学形式表现了频率的稳定性。因此,当 n n n很大时,事件发生的频率与概率偏差较大的可能性很小,这一点实用性很强,因为当试验次数很大时,我们可以用事件发生的频率来代替事件的概率。

3、辛钦定理
a. 定理:设随机变量 X 1 , X 2 , … , X n , … X_{1},X_{2},\dots,X_{n},\dots X1,X2,,Xn,相互独立,服从同一分布,且具有数学期望 E ( X k ) = μ ( k = 1 , 2 , 3 , …   ) E(X_{k})=\mu(k=1,2,3,\dots) E(Xk)=μ(k=1,2,3,),则对于任意正数 ε \varepsilon ε,有 lim ⁡ n → ∞ P { ∣ 1 n ∑ k = 1 n X k − μ ∣ < ε } = 1 \lim_{n\to\infty}P\{|\frac{1}{n}\sum_{k=1}^{n}X_{k}-\mu|<\varepsilon\}=1 limnP{n1k=1nXkμ<ε}=1

b. 定理说明:
( 1 ) (1) (1) 与切比雪夫定理相比,不要求方差存在;
( 2 ) (2) (2) 贝努利定理是辛钦定理的特殊情况。

c. 推论:设 X 1 , X 2 , … , X n , … X_{1},X_{2},\dots,X_{n},\dots X1,X2,,Xn,为独立同分布的随机变量序列, E ( X 1 k ) < + ∞ E(X_{1}^{k})<+\infty E(X1k)<+,则 1 n ∑ i = 1 n X i k ⟶ p E ( X 1 k ) \frac{1}{n}\sum_{i=1}^{n}X_{i}^{k}\stackrel{p}{\longrightarrow}E(X_{1}^{k}) n1i=1nXikpE(X1k)
证明:令 Y n = X n k , n = 1 , 2 , 3 , … , Y_{n}=X_{n}^{k},n=1,2,3,\dots, Yn=Xnk,n=1,2,3,,显然 Y 1 , Y 2 , … , Y n , … Y_{1},Y_{2},\dots,Y_{n},\dots Y1,Y2,,Yn,也是独立同分布的随机变量序列,且 E ( Y n ) = E ( X n k ) , n = 1 , 2 , 3 , … E(Y_{n})=E(X_{n}^{k}),n=1,2,3,\dots E(Yn)=E(Xnk),n=1,2,3,,对序列 Y 1 , Y 2 , … , Y n , … Y_{1},Y_{2},\dots,Y_{n},\dots Y1,Y2,,Yn,运用辛钦大数定律,得
1 n ∑ i = 1 n Y i = 1 n ∑ i = 1 n X i k ⟶ p E ( Y 1 ) = E ( X 1 k ) \frac{1}{n}\sum_{i=1}^{n}Y_{i}=\frac{1}{n}\sum_{i=1}^{n}X_{i}^{k}\stackrel{p}{\longrightarrow}E(Y_{1})=E(X_{1}^{k}) n1i=1nYi=n1i=1nXikpE(Y1)=E(X1k)

4、中心极限定理
a. 独立同分布的中心极限定理
设随机变量 X 1 , X 2 , … , X n , … X_{1},X_{2},\dots,X_{n},\dots X1,X2,,Xn,相互独立,服从同一分布,且具有数学期望和方差: E ( X k ) = μ , D ( X k ) = σ 2 > 0 ( k = 1 , 2 , 3 , …   ) E(X_{k})=\mu,D(X_{k})=\sigma^{2}>0(k=1,2,3,\dots) E(Xk)=μ,D(Xk)=σ2>0(k=1,2,3,),则随机变量之和的标准化变量
Y n = ∑ k = 1 n X k − E ( ∑ k = 1 n X k ) D ( ∑ k = 1 n X k ) = ∑ k = 1 n X k − n μ n σ Y_{n}=\frac{\sum_{k=1}^{n}X_{k}-E(\sum_{k=1}^{n}X_{k})}{\sqrt{D(\sum_{k=1}^{n}X_{k})}}=\frac{\sum_{k=1}^{n}X_{k}-n\mu}{\sqrt{n}\sigma} Yn=D(k=1nXk) k=1nXkE(k=1nXk)=n σk=1nXknμ
的分布函数 F n ( x ) F_{n}(x) Fn(x)对于任意 x x x满足
lim ⁡ n → ∞ F n ( x ) = lim ⁡ n → ∞ P { ∑ k = 1 n X k − n μ n σ ⩽ x } = ∫ − ∞ x 1 2 π e − t 2 2 d t = Φ ( x ) \lim_{n\to\infty}F_{n}(x)=\lim_{n\to\infty}P\{\frac{\sum_{k=1}^{n}X_{k}-n\mu}{\sqrt{n}\sigma}\leqslant x\}=\int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^{2}}{2}}dt=\Phi(x) limnFn(x)=limnP{n σk=1nXknμx}=x2π 1e2t2dt=Φ(x)
该定理表明:当 n → ∞ n\to\infty n,随机变量序列 Y n Y_{n} Yn的分布函数收敛于标准正态分布的分布函数。

b. 德莫佛-拉普拉斯定理
设随机变量 η n ( n = 1 , 2 , 3 , …   ) \eta_{n}(n=1,2,3,\dots) ηn(n=1,2,3,)服从参数为 n , p ( 0 < p < 1 ) n,p(0<p<1) n,p(0<p<1)的二项分布,则对于任意 x x x,恒有
lim ⁡ n → ∞ P { η n − n p n p ( 1 − P ) ⩽ x } = ∫ − ∞ x 1 2 π e − t 2 2 d t = Φ ( x ) \lim_{n\to\infty}P\{\frac{\eta_{n}-np}{\sqrt{np(1-P)}}\leqslant x\}=\int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^{2}}{2}}dt=\Phi(x) limnP{np(1P) ηnnpx}=x2π 1e2t2dt=Φ(x).。
证明:易知 η n = ∑ k = 1 n X k \eta_{n}=\sum_{k=1}^{n}X_{k} ηn=k=1nXk,其中 X 1 , X 2 , … , X n X_{1},X_{2},\dots,X_{n} X1,X2,,Xn是相互独立的、服从同一(0-1)分布的随机变量,分布律为 P { X k = i } = p i ( 1 − p ) 1 − i ,    i = 0 , 1 P\{X_{k}=i\}=p_{i}(1-p)^{1-i},\space\space i=0,1 P{Xk=i}=pi(1p)1i,  i=0,1
∵ E ( X k ) = p , D ( X k ) = p ( 1 − p ) , k = 1 , 2 , 3 , … , n \because E(X_{k})=p,D(X_{k})=p(1-p),k=1,2,3,\dots,n E(Xk)=p,D(Xk)=p(1p),k=1,2,3,,n
∴ \therefore 根据独立同分布中心极限定理,有
lim ⁡ n → ∞ P { η n − n p n p ( 1 − p ) ⩽ x } = lim ⁡ n → ∞ P { ∑ k = 1 n X k − n p n p ( 1 − p ) ⩽ x } = ∫ − ∞ x 1 2 π e − t 2 2 d t = Φ ( x ) \lim_{n\to\infty}P\{\frac{\eta_{n}-np}{\sqrt{np(1-p)}}\leqslant x\}=\lim_{n\to\infty}P\{\frac{\sum_{k=1}^{n}X_{k}-np}{\sqrt{np(1-p)}}\leqslant x\}=\int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}}e^{-\frac{t^{2}}{2}}dt=\Phi(x) limnP{np(1p) ηnnpx}=limnP{np(1p) k=1nXknpx}=x2π 1e2t2dt=Φ(x)
该定理表明:正态分布是二项分布的极限分布,当 n n n充分大时,可以利用该定理来计算二项分布的概率。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值