昇腾系列芯片命名搞不清?看这一篇就够了!!!

Ascend310系列

Ascend310(基本淘汰)

B系列

Ascend310B1
Ascend310B2
Ascend310B3(Atlas200I A2芯片)
Ascend310B4(香橙派AI Pro芯片)

P系列

Ascend310P1(Atlas300I Pro、Atlas300V Pro)
Ascend310P3(*2 ——>Atlas300I DUO卡 48G)

Ascend910系列

A系列

Ascend910A———————————————————————————32G显存
Ascend910B (不带数字,还是A系列) —————————————32G显存
Ascend910ProA(Pro系列,cube_freq较前代提升100)——————32G显存
Ascend910ProB(Pro系列,看似910B,实则910A) ———————32G显存
Ascend910PremiumA ——————————————————————32G显存

B系列

Ascend910B1(Atlas800T A2 训练卡)——————64G显存
Ascend910B2(Atlas800T A2 训练卡)——————64G显存
Ascend910B3(Atlas800T A2 训练卡)——————64G显存

Ascend910B4(Atlas800I A2 推理卡)——————32G显存

C系列

Ascend910C1
Ascend910C2
Ascend910C3
Ascend910C4

ATB算子(产品线)—— 针对Transformer

  • 定义:ATB算子是 Ascend Transformer Boost 加速库中的一种算子,主要用于优化Transformer模型中的计算,特别是针对大规模张量运算的优化
  • 特点:ATB算子通过tiling技术将大的计算任务分解成更小的块,来提高计算效率。这种技术可以更好地利用高速缓存,减少内存访问延迟,并且更适合并行计算环境
  • 应用场景:ATB算子特别适用于处理大规模数据集和复杂模型,如自然语言处理和图像识别任务中的Transformer模型

ACLNN算子(海思)—— 所有昇腾卡上能跑的NN模型

  • 定义:ACLNN算子是 Ascend Computing Language Neural Network 算子库中的一部分,提供了一系列深度优化过的高性能算子API,用于在昇腾AI处理器上执行NN计算
  • 特点:ACLNN算子库包括多种算子,如NN算子、DVPP算子和HCCL算子等,支持高性能媒体数据处理和分布式训练中的高效数据传输
  • 应用场景:ACLNN算子适用于各种深度学习任务,包括但不限于图像识别、语音识别和推荐系统等

ATB算子更专注于Transformer模型的优化(大模型)
ACLNN算子提供更广泛的算子支持,适用于多种深度学习任务(大小模型)

算子库分类:

  • NN(Neural Network)算子库:Softmax、MatMul、Conv 等常见深度学习算法
  • BLAS(Basic Linear Algebra Subprograms)算子库:矩阵乘法、最大/最小值计算、加法等基本线性代数运算
  • DVPP(Digital Vision Pre-Processing)算子库:图像和视频预处理能力,支持高效视频编解码和图像处理
  • AIPP(AI Pre-Processing)算子库:针对图像数据的AI预处理进行优化,使数据可以直接用于推理
  • HCCL(Huawei Collective Communication Library)算子库:提供单机多卡及多机多卡间DP、TP集合通信方案

MindIE——用的自己的atb算子库

### 部署 DeepSeek 至华为升腾 910B #### 准备环境 为了确保 DeepSeek 能顺利运行于华为升腾 910B 平台上,需先安装必要的依赖库并配置好开发环境。这通常涉及到 CANN (Compute Architecture for Neural Networks) 的设置以及 Python 开发包的准备[^1]。 #### 安装 CANN 及其组件 CANN 是专门为 Atlas 系列产品设计的一套完整的软件栈,它提供了从底层驱动到高层框架的支持。对于想要利用 Ascend NPU 进行推理或训练的应用程序来说,安装最新版本的 CANN 是必不可少的第一步。通过官方文档可以获取详细的安装指南兼容性列表。 #### 获取预编译模型或转换现有模型 如果计划直接使用已经过优化处理过的预训练模型,则可以直接下载对应格式文件;而对于自定义创建的新模型,则可能需要借助工具链完成由 TensorFlow 或 PyTorch 到 MindSpore IR 表达形式之间的迁移工作。MindConverter 工具能帮助简化这一过程。 #### 编写应用程序接口调用代码 一旦完成了上述准备工作之后,就可以着手编写具体的业务逻辑部分了。下面给出了一段简单的 Python 示例代码用于加载已有的 .om 文件并通过 AIPP 接口执行前向传播操作: ```python from mindspore import context, Tensor import numpy as np context.set_context(device_target="Ascend", device_id=0) def load_model_and_predict(input_data_path): graph = Graph() with open('model.om', 'rb') as f: model_content = f.read() session = Session(graph) input_tensor = Tensor(np.fromfile(input_data_path, dtype=np.float32).reshape((1, 3, 224, 224))) output_tensors = session.run([input_tensor]) return output_tensors[0].asnumpy().tolist() ``` 此段脚本展示了如何初始化上下文环境、读取 OM 模型数据流、构建会话对象并向其中传入输入张量以获得预测结果的过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值