昇腾系列芯片命名搞不清?看这一篇就够了!!!

Ascend310系列

Ascend310(基本淘汰)

B系列

Ascend310B1
Ascend310B2
Ascend310B3(Atlas200I A2芯片)
Ascend310B4(香橙派AI Pro芯片)

P系列

Ascend310P1(Atlas300I Pro、Atlas300V Pro)
Ascend310P3(*2 ——>Atlas300I DUO卡 48G)

Ascend910系列

A系列

Ascend910A———————————————————————————32G显存
Ascend910B (不带数字,还是A系列) —————————————32G显存
Ascend910ProA(Pro系列,cube_freq较前代提升100)——————32G显存
Ascend910ProB(Pro系列,看似910B,实则910A) ———————32G显存
Ascend910PremiumA ——————————————————————32G显存

B系列

Ascend910B1(Atlas800T A2 训练卡)——————64G显存
Ascend910B2(Atlas800T A2 训练卡)——————64G显存
Ascend910B3(Atlas800T A2 训练卡)——————64G显存

Ascend910B4(Atlas800I A2 推理卡)——————32G显存

C系列

Ascend910C1
Ascend910C2
Ascend910C3
Ascend910C4

ATB算子(产品线)—— 针对Transformer

  • 定义:ATB算子是 Ascend Transformer Boost 加速库中的一种算子,主要用于优化Transformer模型中的计算,特别是针对大规模张量运算的优化
  • 特点:ATB算子通过tiling技术将大的计算任务分解成更小的块,来提高计算效率。这种技术可以更好地利用高速缓存,减少内存访问延迟,并且更适合并行计算环境
  • 应用场景:ATB算子特别适用于处理大规模数据集和复杂模型,如自然语言处理和图像识别任务中的Transformer模型

ACLNN算子(海思)—— 所有昇腾卡上能跑的NN模型

  • 定义:ACLNN算子是 Ascend Computing Language Neural Network 算子库中的一部分,提供了一系列深度优化过的高性能算子API,用于在昇腾AI处理器上执行NN计算
  • 特点:ACLNN算子库包括多种算子,如NN算子、DVPP算子和HCCL算子等,支持高性能媒体数据处理和分布式训练中的高效数据传输
  • 应用场景:ACLNN算子适用于各种深度学习任务,包括但不限于图像识别、语音识别和推荐系统等

ATB算子更专注于Transformer模型的优化(大模型)
ACLNN算子提供更广泛的算子支持,适用于多种深度学习任务(大小模型)

算子库分类:

  • NN(Neural Network)算子库:Softmax、MatMul、Conv 等常见深度学习算法
  • BLAS(Basic Linear Algebra Subprograms)算子库:矩阵乘法、最大/最小值计算、加法等基本线性代数运算
  • DVPP(Digital Vision Pre-Processing)算子库:图像和视频预处理能力,支持高效视频编解码和图像处理
  • AIPP(AI Pre-Processing)算子库:针对图像数据的AI预处理进行优化,使数据可以直接用于推理
  • HCCL(Huawei Collective Communication Library)算子库:提供单机多卡及多机多卡间DP、TP集合通信方案

MindIE——用的自己的atb算子库

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值