Ascend310系列
Ascend310(基本淘汰)
B系列
Ascend310B1
Ascend310B2
Ascend310B3(Atlas200I A2芯片)
Ascend310B4(香橙派AI Pro芯片)
P系列
Ascend310P1(Atlas300I Pro、Atlas300V Pro)
Ascend310P3(*2 ——>Atlas300I DUO卡 48G)
Ascend910系列
A系列
Ascend910A———————————————————————————32G显存
Ascend910B (不带数字,还是A系列) —————————————32G显存
Ascend910ProA(Pro系列,cube_freq较前代提升100)——————32G显存
Ascend910ProB(Pro系列,看似910B,实则910A) ———————32G显存
Ascend910PremiumA ——————————————————————32G显存
B系列
Ascend910B1(Atlas800T A2 训练卡)——————64G显存
Ascend910B2(Atlas800T A2 训练卡)——————64G显存
Ascend910B3(Atlas800T A2 训练卡)——————64G显存
Ascend910B4(Atlas800I A2 推理卡)——————32G显存
C系列
Ascend910C1
Ascend910C2
Ascend910C3
Ascend910C4
ATB算子(产品线)—— 针对Transformer
- 定义:ATB算子是 Ascend Transformer Boost 加速库中的一种算子,主要用于优化Transformer模型中的计算,特别是针对大规模张量运算的优化
- 特点:ATB算子通过tiling技术将大的计算任务分解成更小的块,来提高计算效率。这种技术可以更好地利用高速缓存,减少内存访问延迟,并且更适合并行计算环境
- 应用场景:ATB算子特别适用于处理大规模数据集和复杂模型,如自然语言处理和图像识别任务中的Transformer模型
ACLNN算子(海思)—— 所有昇腾卡上能跑的NN模型
- 定义:ACLNN算子是 Ascend Computing Language Neural Network 算子库中的一部分,提供了一系列深度优化过的高性能算子API,用于在昇腾AI处理器上执行NN计算
- 特点:ACLNN算子库包括多种算子,如NN算子、DVPP算子和HCCL算子等,支持高性能媒体数据处理和分布式训练中的高效数据传输
- 应用场景:ACLNN算子适用于各种深度学习任务,包括但不限于图像识别、语音识别和推荐系统等
ATB算子更专注于Transformer模型的优化(大模型)
ACLNN算子提供更广泛的算子支持,适用于多种深度学习任务(大小模型)
算子库分类:
- NN(Neural Network)算子库:Softmax、MatMul、Conv 等常见深度学习算法
- BLAS(Basic Linear Algebra Subprograms)算子库:矩阵乘法、最大/最小值计算、加法等基本线性代数运算
- DVPP(Digital Vision Pre-Processing)算子库:图像和视频预处理能力,支持高效视频编解码和图像处理
- AIPP(AI Pre-Processing)算子库:针对图像数据的AI预处理进行优化,使数据可以直接用于推理
- HCCL(Huawei Collective Communication Library)算子库:提供单机多卡及多机多卡间DP、TP集合通信方案
MindIE——用的自己的atb算子库