Lancet:我国癌症死亡率最新数据公布,15年增长22%

2023年12月,中国疾病预防控制中心殷鹏齐金蕾首都医科大学李梦龙等人在《柳叶刀》子刊" The Lancet Public Health "(IF=50)上发表了一篇题为" National and subnational trends in cancer burden in China,2005-20:an analysis of national mortality surveillance data "的研究论文。

8e22f30194d2fe70150b310a722bb5dd.png

癌症是全球主要的公共卫生问题,近年来,由于饮食、环境、人口的老龄化等因素,全球癌症发病率不断增长,癌症作为主要死因的情况日益突出。

根据国际癌症研究机构(IARC)发布的2020年全球最新癌症数据,中国已经成为了名副其实的癌症大国。作为世界上的人口大国,中国的癌症数据不容乐观,不论是新发人数还是死亡人数,中国都位居全球第一。

在这项研究中,研究人员分析了中国31个省,根据国家死亡率监测系统分析了总体癌症死亡率和23个特定部位癌症死亡率,评估了2005-2020年中国国家和地方癌症负担的变化。

总的来讲,2020年,中国癌症相关死亡人数为240万人,因癌症导致的生命损失年数(YLL)为5660万。

该研究显示,2005-2020年,癌症相关总死亡人数增加了21.6%

2005-2020年间,大多数癌症的死亡率显著下降,死亡人数有所增加。位居榜首的气管癌、支气管癌和肺癌相关死亡的比例有所增加,主要归因于人口增长和人口老龄化。

男性和女性前五大致命癌症

在男性中,2020年,前五大致命癌症依次是:气管癌、支气管癌和肺癌;肝癌;胃癌;食管癌;结直肠癌。

在女性中,2020年,前五大致命癌症依次是:气管癌、支气管癌和肺癌;肝癌;胃癌;结直肠癌;乳腺癌。

e70a6470d3fcfa0c9045e553db9bf3be.png

2005-20年中国男性(A)和女性(B)癌症死亡人数排名

2005-2020年间,大多数癌症的死亡率显著下降,死亡人数有所增加。位居榜首的气管癌、支气管癌和肺癌相关死亡的比例有所增加,主要归因于人口增长和人口老龄化。

男性死亡率第2-5位癌症保持不变,这四种癌症死亡率从2005年的55.8%下降到2020年的45.3%。然而,在女性中,肝癌从第三位上升到第二位,结直肠癌从第五位上升到第四位,乳腺癌从第六位上升到第五位,女性第2-5位癌症死亡率从46.6%下降至38.3%。

不同年龄段致命癌症

根据不同年龄段分析发现,癌症相关死亡的十大主要原因在不同年龄组之间差异很大,青壮年的死亡率远低于老年人

在0-19岁的人群中,三种主要的致命癌症是白血病、脑癌和神经系统癌、肝癌。

在20-39岁的人群中,男性三种主要的致命癌症是肝癌、白血病、气管癌、支气管癌和肺癌;女性三种主要的致命癌症是乳腺癌、白血病、宫颈癌。

在40-59岁的人群中,男性三种主要的致命癌症是肝癌、气管癌、支气管癌和肺癌、胃癌;女性三种主要的致命癌症是气管癌、支气管癌和肺癌、乳腺癌、宫颈癌。

在60岁以上人群中,主要致命癌症是气管癌、支气管癌、肺癌、肝癌、胃癌。

f5dd83920e85b52586a11f5560ff3cda.png

2020年按年龄划分的男性癌症死亡率

总结

综上,2005-2020年,中国癌症相关死亡总数和YLL显著增加,中国癌症负担沉重且持续上升,由于中国人口基数大,癌症死亡人数仍居世界第一,需要进一步降低气管癌、支气管癌、肺癌或其他主要癌症死亡和新发癌症的负担。

论文链接:

https://doi.org/10.1016/S2468-2667 (23)00211-6

本文部分信息来自“医诺维”公众号,欢迎关注。


本公众提供各种科研服务了!

一、课程培训

2022年以来,我们召集了一批富有经验的高校专业队伍,着手举行短期统计课程培训班,包括R语言、meta分析、临床预测模型、真实世界临床研究、问卷与量表分析、医学统计与SPSS、临床试验数据分析、重复测量资料分析、nhanes、孟德尔随机化等10余门课。如果您有需求,不妨点击查看:

发表文章后退款!2023年郑老师团队多门科研统计直播课程,欢迎报名

二、统计服务

为团队发展,我们将与各位朋友合作共赢,本团队将开展统计分析服务,帮忙进行临床科研。欢迎了解详情:

医学统计服务| 医公共数据库论文一对一指导

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值