跳到主要内容跳到文章
爱思唯尔徽标
搜索ScienceDirect
生物医学
第50卷,2019年12月,第156-165页
EBioMedicine的期刊主页
研究论文
对比CT放射线学的机器学习分析预测切除后肝细胞癌的复发:一项多机构研究
作者链接打开覆盖面板姬顾卫一b ç朱飞鹏d徐清d王柯一b Ç吴铭宇è唐唯唯˚F李相成一b ç王薛浩一b Ç
https://doi.org/10.1016/j.ebiom.2019.10.057获取权利和内容
根据知识共享许可开放存取
强调
•
我们使用机器学习框架确定了三特征融合签名。
•
签名加上临床资料可准确预测HCC复发。
•
该特征可以作为侵略性疾病的早期发现者。
•
我们强调了放射学和现有变量的互补性质。
抽象
背景
当前的指南建议手术切除是孤立性肝细胞癌(HCC)患者的一线选择;不幸的是,术后复发率仍然很高,并且没有可靠的预测工具。我们探索了放射学与机器学习算法相结合的潜力,以提高HCC复发的预测准确性。
方法
从3个独立机构中招募了470例行CT对比增强和根治性切除术治疗孤立性HCC的患者。在来自机构1的210名患者的培训阶段,基于3384个工程学特征(使用聚集的机器学习框架从原发性肿瘤及其周围组织中提取)生成了放射性药物来源的特征。我们采用Cox建模来建立预测模型。然后使用来自机构2和3的107位患者的内部数据集和153位患者的外部数据集对模型进行验证。
发现
使用机器学习框架,我们确定了三个特征的签名,这些签名显示了所有数据集中HCC复发的良好预测,C指数为0.633–0.699。术前模型选择血清甲胎蛋白,白蛋白-胆红素等级,肝硬化,肿瘤切缘和放射学特征。术后模型将卫星结节纳入上述预测因素。与无放射学和广泛使用的分期系统的竞争对手模型相比,这两种模型均显示出优异的预后性能,C指数为0.733–0.801,综合Brier评分为0.147–0.165(所有P <0.05);他们还给出了三种具有不同复发模式的复发风险分层。
解释
当与临床数据源集成时,我们的三功能放射学签名有望准确预测个体复发风险,这可能有助于个性化HCC管理。
图形概要
图像,图形摘要
下载:下载高分辨率图像(194KB)下载:下载全图
上一页文章接下来的文章
关键词
肝细胞癌放射学机器学习再发预测模型
缩略语
肝癌肝细胞癌LT肝移植BCLC巴塞罗那临床肝癌HKLC香港肝癌夹肝癌意大利计划联合会美国癌症联合委员会TNM肿瘤淋巴结转移ERASL肝肿瘤手术后的早期复发ML机器学习电脑断层扫描CT检查投资回报率感兴趣区域国际刑事法院组内相关系数MRMR最大相关性最小冗余MI共同信息RSF随机生存森林维姆可变重要性套索最小绝对收缩和选择算子AIC赤池信息标准法新社甲胎蛋白核磁共振磁共振成像射频信号无复发生存C指数一致性指数鹏接收器工作特性肠易激综合症综合布里尔得分IQR四分位间距
情境研究
这项研究之前的证据
切除肿瘤的理想人选是早期患有孤立性肝细胞癌(HCC)的患者,无论其肿瘤大小和肝功能是否得到保护。不幸的是,疾病复发率仍然很高,并且没有可靠的预测工具。Radiomics是一项新兴技术,它使用自动化且高通量的方法来量化成像表型。只有很少的研究使用放射组学来预测HCC复发的可能性,其中大多数仅从肿瘤中提取工程特征。然而,肿瘤周围区域具有高度侵袭性的肿瘤细胞。此外,据我们所知,迄今为止,尚无关于使用放射性药物预测早期HCC手术切除后复发的多机构研究的报道。
这项研究的附加值
我们使用汇总的机器学习框架确定了三个特征的放射性标记。签名加上临床资料可以准确地预测手术前后肝癌的复发情况,并且与没有放射线组以及广泛使用的分期系统的竞争对手模型相比,其预后性能更好。此外,这两个模型可以给出三个风险级别,分别具有低,中或高的复发风险,并有不同的复发模式,并有内部和外部验证支持。
所有可用证据的含义
这项研究强调了放射性组学和现有变量的互补性。我们的结果表明,具有三特征的特征可以作为早期孤立性HCC患者侵略性疾病的早期检测器。当与临床数据源集成时,radiomics签名有望准确预测可能有助于个性化HCC管理的个体复发风险。
CRediT作者贡献声明
季谷伟:写作-初稿,写作-回顾与编辑。朱飞鹏:。徐青:。王珂:数据策划。吴明宇:数据策划。汤唯唯:写作-评论与编辑。李相成:写作-评论与编辑。王学豪:写作-评论与编辑。
1 。介绍
肝细胞癌(HCC)的行列四号癌症相关死亡的最常见的原因全局当中,与预后主要由肿瘤负荷和肝功能障碍[从动1,2 ]。在确诊初期,手术切除和肝移植(LT)的部分患者有潜在疗效,可以达到60-80%[5年生存率2,3]。LT具有一定的肿瘤治疗优势,但对器官的需求远远超过了供应。对于保留肝功能的患者,无论肿瘤大小如何,手术切除均被视为早期孤立性HCC的一线治疗选择。不幸的是,在5年内,有50%-70%的病例复发,反映了复发性或复发性[1],[2],[3],[4]。
根治性治疗后,HCC患者不会通过该疾病的发展阶段复发[1]。尽管有几种分期系统,例如巴塞罗那临床肝癌(BCLC),香港肝癌(HKLC),意大利肝癌计划(CLIP)和美国癌症联合委员会(AJCC)肿瘤淋巴结转移(TNM)系统-已提出用于预后预测和治疗分配的系统,它们并非来自接受手术治疗的患者,因此不足以预测切除后的复发[ 1 – 5]。最近,已经开发了两种肝癌手术后早期复发(ERASL)模型,专门用于预测HCC复发。然而,它们的区分能力几乎不能令人满意,并且它们都没有在单独病变的患者中得到特别验证,这些患者是切除的理想人选[5]。基因组研究可以提供预后信息,但这种方法并没有在常规临床护理[被使用2,6 ]。相反,医学成像是肿瘤学中必不可少的工具。
一个迅速发展的领域称为“放射组学”,它使用自动化和高通量方法来量化成像表型,有望在精密医学上取得长足进步[7],[8],[9]。这种新的范式是对传统影像语义的扩展,是通过机器学习(ML)算法进行挖掘的,以选择健壮的功能并开发可能改善结果预测的模型。最近,一些研究采用了放射线学来预测切除后肝癌的早期复发。然而,在这些研究中,感兴趣的结果已转换为二分终点(早期复发与晚期复发或无复发),从而招致偏倚预测准确性的风险,而很少有人尝试根据持续的事件生存时间来评估复发风险数据[10],[11],[12]。此外,以前的大多数研究仅从肿瘤注释中提取工程特征;然而,肿瘤周围区域在病理学上具有高度侵袭性的肿瘤细胞,并且通过HCC的放射学分析所捕获的肿瘤周围变化可能具有预后信息[11],[12],[13],[14],[15]。据我们所知,迄今尚无关于使用放射组学预测早期HCC手术切除后复发的多机构研究的报道。
这项研究旨在调查造影增强计算机断层扫描(CT)结合基于ML的算法的放射线分析是否可以改善临床背景下单发病变患者的HCC复发预测,并通过内部和外部验证为依据。我们将已建立的模型的性能与竞争对手的模型和登台系统所达到的性能进行了基准比较,以确定放射线学的附加值。
2 。材料和方法
2.1 。研究人群
所有参与机构的机构审查委员会均批准了这项回顾性研究,所有委员会均放弃了患者的书面知情同意书。2009年1月至2016年12月之间,通过根治性切除术治疗的1037例经病理证实的孤立性HCC患者来自3个独立机构。其中,根据图1所示的研究标准,将470名患者纳入了最终分析。我们以二比一的比例随机分配了从第一机构(南京医科大学附属第一医院)招募的317名患者进行培训(n = 210)和内部验证(n = 107)数据集。外部验证集由在2个独立机构接受治疗的153名患者组成[机构2(n = 94):无锡市人民医院,中国无锡;机构3(n = 59):南京市第一医院]
图。1
下载:下载高分辨率图片(1MB)下载:下载全图
图1。研究设计流程图。HCC,肝细胞癌;CT,计算机断层扫描;TACE,经导管动脉化疗栓塞;AFP,甲胎蛋白;投资回报率,感兴趣的区域。
2.2 。图像分析
表S1中详细列出了CT协议。两名对肝脏成像有10年(阅读器1:FPZ)和20年(阅读器2:QX)经验的腹部放射科医生对所有临床数据均视而不见,他们独立回顾了基线CT图像以评估以下特征:(b)肝硬化;(c)增强动脉边缘;(d)动脉瘤周围增强;(e)肿瘤边缘;(f)放射胶囊;(g)肿瘤内坏死;(h)放射基因组静脉侵袭。诊断标准在补充方法中介绍。记录肿瘤大小作为平均值。不一致的注释通过第三次会议的共识审查得到解决,阅读者之间的差异通过Kappa统计数据进行了衡量。
2.3 。放射分析
放射性组的工作流程总结在图1中。使用在3D Slicer(版本4.9.0; www。slicer.org)中实现的Fast GrowCut算法,在动脉和门静脉期的每个横向切片上半自动描绘感兴趣区域(ROI)。肿瘤内带注释的病变称为肿瘤内ROI;通过自动扩张和使肿瘤边界每侧缩小2 mm来产生肿瘤周围ROI,从而产生4mm宽的条带。所有图像重采样为1×1×1个毫米,体素强度的体素尺寸用25个菲尔德单位[仓宽度被离散化16,17 ]。我们使用开源Pyradiomics软件包(版本:2.12; 2:12; 3)从每个三维ROI中提取了846个放射学特征。https://pyradiomics.readthedocs.io/zh/2.1.2/),包括19个一阶统计量,75个文本特征和752个小波特征。考虑到从肿瘤及其周围进行的双相放射学分析,每位患者共获得3384个特征。补充方法中提供了特征提取算法,并使用从训练集中得出的Z分数对特征值进行了标准化。所有细分均由阅读器1完成。为了测试特征的稳定性,阅读器1和阅读器2在一周内对30位随机选择的患者进行独立的特征提取。通过使用类内相关系数(ICC)计算稳定性。在重新测试和阅读器间设置中具有出色稳定性(ICC> 0.90)的功能包括在后续分析中。
2.4 。机器学习框架
在不涉及模型的情况下,实现了两种最常用的ML算法来进行特征过滤和选择:(ⅰ)最大相关性最小冗余(MRMR)和(ⅱ)随机生存森林(RSF)在于计算与到达时间相关的特征重要性事件结果。MRMR通过最大化具有结果的互信息(MI)以及最小化具有所有较高排名特征的平均MI来对输入特征