方法 | 如何根据P值开展逐步回归法logistic回归?

本文介绍了如何使用R语言进行临床预测模型的逐步回归,特别提到在处理P值大于0.05但依然保留的变量时,风暴统计平台提供了一种解决方案。该平台由郑卫军教授开发,支持菜单式操作,帮助统计小白轻松进行分析,并展示了如何在风暴统计中进行数据导入、变量选择和P值限制的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

详情请点击右方:零基础两天学会R语言构建临床预测模型


logistic回归中变量筛选可以采用先单后多逐步回归的方法进行,先单后多平时比较常见,这里主要讲一下逐步回归!

逐步回归的目的是用最少的因子,成功构建出不差于全变量模型。但可能会出现这样的尴尬情况——有些变量P值大于0.05但仍保留在逐步回归模型中

实际上这是正常的,多因素逐步回归筛选自变量,无论是SPSS,还是R语言,都不是根据P值<0.05来确定留下的自变量;SPSS默认是P值<0.1的标准,R语言是AIC准则

但是这在结果解释的时候会带来一些难题,像下图中的"race"应该如何讨论与结局之间的关系呢?明明多因素没有统计学意义,但最终留在了模型中。

0583c417a410d4a9a66232c863345f82.png

只是目前无论是SPSS还是R语言,都没有办法一步到位实现逐步回归同时在结果中限制P值!因此,这里给大家推荐一个统计小工具——风暴统计,可以快速解决这个问题,避免P值大于0.05的变量最终被保留在逐步回归模型中!

风暴统计是由浙江中医药大学郑卫军教授基于R语言搭建的一站式免费公开统计分析平台,不仅分析结果与R语言一致,并且全部实现菜单式操作,统计小白也可以轻松上手!

logistic回归具体网址:https://shiny.medsta.cn/log/

或者百度、必应Bing搜索“风暴统计”

本平台上线的所有工具都是免费的

75caf8768867edda0e499cea7e9e1dad.png

首先,进入风暴统计平台

这里我们不再赘述数据的导入与整理过程,详细教程大家可以点击下方链接:

详细指南!风暴统计如何高效导入数据,统计分析快人一步?

详细版!如何利用风暴统计进行数据的整理转换?

目前风暴统计平台可以完成逐步回归+P限制,只需2步!

  • 选入回归自变量

  • 选择自变量筛选方式

1.logistic回归自变量选择

首先,选入变量,包括因变量定量自变量分类自变量

e46b6ea9056344f37af72a3a62ed0f4d.png

①因变量

这里因变量建议使用0和1进行表示,0代表阴性结局(如:未患病、二分类变量中值较小的组),1代表阳性结局(如:患病或二分类结局中值较大的组)。

②定量自变量

平台会将分类数大于5的变量自动归为定量自变量,并在选取定量自变量时,优先显示在上方,便于选取。

12205a6ac0b2aa6c2cd86639c73f39f9.png

③分类自变量

同理,分类数小于5类的变量归入分类变量,在选取变量时,优先显示分类变量。

eeb8ce4bb169bc19d46015d5f9f9348a.png

2.开展逐步回归+P限制

逐步回归方法,平台也提供了多种选择:双向逐步回归,向前逐步回归,向后逐步回归以及考虑到有时P值大于0.05的变量在逐步回归时也会留在模型中,新增了根据P<0.05的原则开展逐步回归

a1ccab279d1cd22837048777e381ea83.png

3.下载结果

平台给出了多种结果展示,仅展示单因素回归结果,仅展示多因素回归结果,单因素+多因素显示在同一个表格中!

可以看到我们最终的多因素结果中所有变量P值都<0.05!

32fbbc8d7a76245da8d64487b071bf30.png

平台还可以指定小数位数,默认情况下,P值为3位小数,其他统计量为2位小数。

指定小数位数后,P值与统计量的小数位数将会统一。调整完成后,下载最终的三线表结果,平台支持下载excel或word

a72b2c6a4e314b8213c6dc5fffa3d0a5.png

十分的快捷便利,简单勾选,就可以轻松完成logistic逐步回归同时限制P值,结果直接整理为规范的三线表,可以节省超多工作量,快来试用吧!

如果您在风暴统计平台的使用过程中有任何的建议或疑问,欢迎加入我们的讨论群!群里郑老师与助教会在群内解答!

b648749a8ee2dd31d92ff184d652411d.png

统计机器人交流群

4c66cf2050d2615223f599b19e670577.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值