换个暴露又发一区(IF=10.1)!双样本孟德尔随机化+脂质组学拿下高分SCI!

详情请点击下方:

两天掌握孟德尔随机化高级方法:多变量、中介、药靶。。。。


孟德尔随机化的热度一直很高,不少想发文的对此肯定又爱又恨。今天我们看的这篇文章就仅用了双样本孟德尔随机化的方法,看似显而易见的关系,竟然结合了脂质组学,立马升华,发表一区(IF=10.1)! 

2024年5月2日,中国学者做了一项双样本孟德尔随机化研究,在期刊《Haematologica》(医学一区top,IF=10.1)发表了题为:”Two-sample Mendelian randomization analysis reveals causal relationships between blood lipids and venous thromboembolism”的研究论文,旨在通过241个脂质相关性状作为暴露,并利用 FinnGen 联盟关于静脉血栓栓塞 (VTE)、深静脉血栓形成 (DVT)和肺栓塞 (PE)的数据作为结局,采用双样本孟德尔随机化(MR)分析来探究脂质与 VTE、DVT 和 PE 之间的因果关系。

a7d439ca29df9ce67c8a6bc74a209055.png

本研究数据来源GWAS,最终纳入241个脂质相关性状进行分析,研究过程如下图所示:

701f1d9e275c4f24248b8be244971da8.png

1、与静脉血栓栓塞(VTE)相关的血脂以及血脂相关性状

在排除了14个表现出定向多效性或敏感性的暴露后,最终得出如下的结果:

  • 1个磷脂酰胆碱(PC ae C40:4)和3个与中等低密度脂蛋白(LDL)相关性状对VTE有保护作用;

注:中等LDL相关性状为中等LDL中的总脂质、中等LDL颗粒浓度、中等LDL中的总胆固醇

  • 2个与脂肪酸(FA)饱和度相关的性状显示出致病作用

注:脂肪酸(FA)饱和度相关的性状为脂质中双烯丙基键与双键的比例、脂质中双烯丙基键与总脂肪酸的比率。

48f7d4091baddf502b4e2937cc7d96de.png

2、较高的脂肪酸(FA)不饱和度可能会增加静脉血栓栓塞(VTE)的风险

在去除14个不稳定暴露后,最终确定3个FA饱和度相关性状与DVT风险呈正相关。

ee78282feec2d1ff3cdcc262d2fbb31d.png

这3个特征的MR-RAPS和加权中位数方法的结果也符合严格的显著性阈值(P值< 2.64×10−4)。加权模型和MR-Egger方法均显示与DVT有一定的因果关系(P值< 0.05)。遗传仪器的f统计量均大于10,表明不存在微弱的仪器偏差。

3、较高的脂肪酸(FA)不饱和度可能会增加肺栓塞(PE)的风险

经Bonferroni校正(P值< 2.64×10−4),研究结果如下:

  • 2个磷脂酰胆碱(PC aa C42:6, PC ae C36:4)和2个FA饱和度相关的性状与PE呈正相关

f7d7e7fe5134203322481a236651dc01.png

就在前几天,本公众号已经发过一篇类似的文章,同样是基于全基因组关联研究(GWAS)公开的汇总统计数据开展双向两样本孟德尔随机化分析,评估阻塞性睡眠呼吸暂停(OSA)与静脉血栓栓塞(VTE)(包括深静脉血栓形成(DVT)和肺栓塞(PE))之间的确切关联,阴性结果发了二区。

亏了亏了!双向孟德尔随机化阴性结果居然发了SCI二区(IF=6.7)

本文换了一个暴露,探究脂质与 VTE、DVT 和 PE 之间的因果关系,发了一区!难道又是一个宝藏指标吗?

后记

无需原始数据,本文基于已有的遗传变异数据进行分析,无需额外的实验或收集原始数据,这大大减少了研究的时间和成本。

本文的研究思路非常清晰!

  • 使用双样本孟德尔随机化(MR)方法分析脂质与静脉血栓栓塞之间存在的因果关系,包括逆方差加权(IVW)、稳健调整剖面评分(RAPS)、MR-egger、加权中位数和加权模式5种方法;

  • Cochran’s Q 和 Rucker’s Q 统计用于评估MR结果的多效性;

  • 采用敏感性分析检测潜在显性SNP的存在。

孟德尔随机化在一区嘎嘎乱杀!要想发文就要不断找寻新的研究方向和切入点,抓住热点,大胆尝试!如果你不知道从何入手,郑老师从入门到高级的孟德尔随机化课程你值得一看!!

孟德尔随机化课程,入门到高级,郑老师团队主讲,一个月搞定,快速发表论文!


详情请点击下方:

欢迎报名,孟德尔随机化1对1答疑指导学习班!

Plink是一款常用的遗传数据分析工具,它可以处理map和ped文件,这两类文件通常用于存储基因型数据和相应的个体信息。如果你想要将这些数据转换为适合做单样本孟德尔随机化的格式,你需要执行以下步骤: 1. 使用Plink将ped和map文件转换为二进制格式(.bed, .bim, .fam): ``` plink --file input --make-bed --out output ``` 这一步骤会生成三个文件:output.bed、output.bim、output.fam,分别代表二进制的基因型数据、基因标记信息和家系信息。 2. 根据你的研究设计选择合适的单样本孟德尔随机化方法。一般来说,单样本孟德尔随机化需要以下数据: - 单核苷酸多态性(SNP)的效应值(通常是基于GWAS研究得到的); - 暴露变量与SNP之间的关联数据; - SNP与结果变量(疾病状态或其他表型)之间的关联数据。 3. 准备好上述数据之后,你可以使用特定的统计软件或编程语言(如R、Python等)来进行孟德尔随机化的分析。如果你需要进行孟德尔随机化的模拟,可能需要编写脚本来模拟数据。 4. 如果你已经准备好了上述数据,并且是通过命令行工具来进行分析,你可以编写一个脚本来自动化分析流程,或者使用已有的孟德尔随机化分析工具(如MRBase的在线工具或相关R包等)。 请注意,单样本孟德尔随机化是一个复杂的过程,需要详细规划和严格的数据处理步骤。确保你的数据是准确的,并且你对孟德尔随机化的原理和应用有充分的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值