【LSAT】VHR遥感图像变化检测的轻型结构感知transformer网络

摘要

  • Transformer已成功地应用于遥感变化检测(RSCD),并取得比CNN更好的结果,但是依然存在两个主要问题:
    • transformer计算复杂度随着图像空间分辨率的增加呈二次增长,不利于超高分辨率遥感图像。
    • 现存的transformer网络往往忽略了细粒度特征的重要性,导致变化较大的对象边缘完整性和紧致性较差。且微小变化对象易被忽略。
  • 为此,本文提出Lightweight Structure-aware Transformer (LSAT)网络,具有两个优点:
    • 设计了一个具有线性复杂度的Cross-dimension Interactive Self-attention (CISA)模块代替普通自注意力,有效降低计算复杂度,同时提高LSAT的特征表示能力。
    • 设计了一个Structure-aware Enhancement Module (SAEM),以增强差异特征和边缘细节信息,通过差分细化和细节聚合实现双重增强,从而获得双时态图像的细粒度特征。
  • 和大多数先进的CD方法相比,LSAT显著的提高了检测精度,并在精度和计算成本之间提供了更好的权衡。
  • 论文链接:https://arxiv.org/abs/2306.01988

方法

总体架构如图1所示

  • LSAT包含:
    • Cross-dimension Interactive Self-attention (CISA)
      • 作为编码器提取双时态图像的层次语义特征。
      • query、key和value由深度可分离卷积投影生成,而非线性投影,加强上下文连接,减少普通自注意力机制引起的语义歧义。
      • 之后执行通道间编码生成通道-通道注意力映射A_1。为了捕获跨通道长依赖关系,在特征图上进行了通道-高度A_2和通-宽度A_3的双分支交互注意力,以增强通道和空间维度之间的跨维度交互作用。提高模型的全局信息提取能力。计算如下:
      • 其中,X_{p1}\in \mathbb{R}^{W\times C\times H}X_{p2}\in \mathbb{R}^{W\times C\times H}是分别对输入特征X_{in}进行维度变换后的张量,C_1表示1\times 1卷积运算,P表示最大池化和平均池化的并行云端,最后注意力计算为:A=\lambda_1 A_1+\lambda_2 A_2+\lambda_3 A_3,其中\lambda _i(1=1,2,3)是超参数。
      • 该模块的计算复杂度为O(C^2+CH+CW)
    • Structure-aware Enhancement Module (SAEM)
      • 如图2所示,​​​​​​​增强细粒度的差异特征。
      • 单分支增强的特征表达能力有限,且计算成本高。SAEM和单分支差异增强不同,使用双分支(差异细化、细节聚合)学习细粒度特征。
        • 差异细化分支:利用卷积操作进一步增强了双时态特征,然后使用轻量级三维注意力SimAM来生成更细粒度的特征,并改进了检测结果的轮廓;
        • 细节聚合分支:细分为两条路径,一是通过合并卷积特征来增强细节信息。二是连接卷积特征,然后利用注意力来提取更丰富的详细信息。
      • SAEM可以减少噪声和错位引起的错误变化,从而获得更有用的细粒度变化特征,提高模型的鲁棒性。
    • 基于注意力的融合模块(AFM)
      • 用于生成细粒度的变化图

实验

Comparison with State-of-the-art

Ablation Study

Model Efficiency

  • 11
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
估计LSAT和GPA之间的相关系数是通过计算它们的样本相关系数来完成的。样本相关系数是衡量两个变量之间线性相关程度的统计量,取值范围在-1到1之间。接下来,我将使用bootstrap方法估计样本相关系数标准差。 首先,我们需要收集LSAT和GPA的样本数据。假设我们已经收集到了一个包含n个样本的数据集。然后,我们可以使用以下公式计算样本相关系数: $r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$ 其中,$x_i$和$y_i$分别表示LSAT和GDP的第i个样本值,$\overline{x}$和$\overline{y}$分别表示LSAT和GDP的样本平均值。 接下来,我们使用bootstrap方法来计算样本相关系数标准差的估计。Bootstrap方法是一种通过对原始样本进行有放回的抽样来估计统计量的方法。具体步骤如下: 1. 从原始样本中使用有放回的方式抽取n个样本,形成一个bootstrap样本。 2. 根据bootstrap样本计算样本相关系数$r_{boot}$。 3. 重复步骤1和步骤2多次,形成多个bootstrap样本和对应的样本相关系数。 4. 根据这些bootstrap样本的样本相关系数计算标准差 $\sigma_r$,作为样本相关系数标准差的bootstrap估计。 最后,根据以上的步骤,我们可以得到LSAT和GPA的样本相关系数,并使用bootstrap方法估计样本相关系数标准差。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值