摘要
- 利用合成孔径雷达(SAR)检测洪水引起的变化是危机管理和损害评估的关键。然而,目前的方法主要集中在光学图像中建筑物的变化,与洪水的复杂结构相比。具有噪声,并伴随计算成本增加。阻碍它们在现实应用中的成功。
- 因此,提出LiST-Net, a lightweight SAR transformer network with dimension-wise attention,以提高洪水检测精度。
- graph neighbor module (GNM)增强编码器内相邻像素和多日期特征的详细信息。
- dimension-wise inter-active attention(DIA)模块,在有效地提高特征表示的同时降低计算复杂度。
- attentive supervised learning module (ASLM) ,通过pixel mask gate来减轻噪声,获取水体的变化信息,提高水体边缘轮廓的准确性。
- 在两个洪水数据集(S1GFloods和ETCI-2021)上验证了LiST-Net的有效性。实验结果表明,LiST-Net优于现有方法,在S1GFloods数据集上,F1提高了94.7%,IoU提高了88.7%,计算成本更低(11.78G),参数更少(7.34M)。
- 论文链接:LiST-Net: Enhanced Flood Mapping With Lightweight SAR Transformer Network and Dimension-Wise Attention | IEEE Journals & Magazine | IEEE Xplore
- 代码链接:Tamer-Saleh · GitHub