多轮对话中的智慧引擎:Agent与Memory的协作之道

1. LangChain Agent 与Memory 在项目中协作的常见方式

LangChain 项目中,AgentMemory 的协作是实现自然语言处理(NLP)任务时非常关键的一部分。 Agent 负责决定如何处理用户输入,并通过选择合适的工具(如调用模型、查询数据库等)来完成任务,而 Memory 则负责保持对话历史和上下文,以便使系统在多轮对话中保持连贯性和一致性。

LangChain 提供了强大的 AgentMemory 功能,它们通过协作,可以使系统更具智能和持续性。以下是 AgentMemory 在实际项目中的常见协作方式:

1. 记忆保持对话上下文

  • Memory 用于存储整个对话的上下文,确保系统能够记住之前的对话内容。
  • Agent 在每轮对话时,利用 Memory 中存储的信息来做出更准确的决策。例如,如果用户问到 “请帮我查找上次提到的订单状态”,系统会从 Memory 中恢复相关信息,然后生成合适的回答。

常见实现方式

  • 使用 ConversationBufferMemoryConversationSummaryMemory 来记录和总结对话历史。
  • Agent 会将当前的 Memory 内容作为输入传递给模型(如 OpenAI GPT),以帮助模型理解对话的上下文。

示例代码

from langchain.agents import initialize_agent, Tool, AgentType
from langchain.memory import ConversationBufferMemory
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate

# 创建 OpenAI LLM
llm = OpenAI(model="gpt-4")

# 初始化 Memory
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)

# 创建工具(可扩展)
tools = []

# 定义代理
agent = initialize_agent(
    tools,
    llm,
    agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    memory=memory,
    verbose=True
)

# 模拟对话
agent.run("帮我查询一下我的订单状态")
agent.run("上次我提到的订单是什么状态?")

2. 任务调度与动态记忆更新

  • Agent 可以根据用户的请求选择不同的任务,并与多个工具进行协作。通过对话中的信息,Agent 会动态更新 Memory,以便更好地处理后续的请求。
  • 比如用户发出指令时,Agent 可以首先调用某个工具进行数据检索,然后更新 Memory 中存储的状态,接着继续执行下一个任务。

常见实现方式

  • 使用 ToolMemory 在不同的任务之间进行信息传递和更新。
  • 每个任务处理结束后,将新的上下文信息更新回 Memory,以便后续任务可以继续基于最新的上下文执行。

示例代码

from langchain.agents import Tool
from langchain.agents import initialize_agent
from langchain.memory import ConversationBufferMemory
from langchain.llms import OpenAI

# 创建工具
def tool1(query):
    return f"Tool1 response to {
     query}"

tool = Tool(
    name="ExampleTool",
    func=tool1,
    description="An example tool"
)

# 初始化 Memory
memory = ConversationBuf
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI Agent首席体验官

您的打赏是我继续创作的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值