Transformer回归预测

一、Attention is all you need——李沐论文精读Transformer

论文地址:

https://arxiv.org/pdf/1706.03762.pdf

Transformer论文逐段精读【论文精读】
卷积神经网络对较长的序列难以建模,因为他每次看一个比较小的窗口,如果两个像素隔得比较远,要用到很多层卷积才能把隔得很远的两个像素融合起来。但是用Transformer一层就能把整个序列看到。但是卷积有一个好处就是一个输出通道可以认为它可以识别不一样的模式Transformer也想要这样子的多输出通道的效果,所以就提出了多头注意力

Transformer

二、李宏毅《深度学习》- Transformer
李宏毅《深度学习》- Transformer

三、Transformer & 时间序列预测
利用Transformer建立时间序列预测模型(附代码)

【长时间序列预测】Autoformer 代码详解之[1]数据预处理及数据读取

电力变压器数据集 (ETDataset)——ETT 时序数据
时序数据
【python量化】大幅提升预测性能,将NSTransformer用于股价预测

神经网络笔记一:Non-stationary Transformers: Exploring the Stationarity in Time Series Forecasting

NeurIPS2022 | NSTransformers: 非平稳时间序列的通用预测框架

Transformer论文详解——想不懂都难

四、transformer做预测模型
使用 Transformer 做预测 (代码+原理)

switch transformer

### 使用Transformer模型处理ETT时间序列数据集 #### 数据预处理 对于 ETT 时间序列数据集,在应用 Transformer 模型之前,需先进行适当的数据预处理。这通常涉及标准化输入特征以及创建滑动窗口来构建训练样本。由于 ETT 数据集具有多个变量的时间序列特性,可以借鉴 iTransformer 的方法将每个时间序列嵌入为变量令牌并使用前馈网络进行编码以捕捉多元相关性[^1]。 ```python import pandas as pd from sklearn.preprocessing import StandardScaler # 加载 ETT 数据集 data = pd.read_csv('ETTh1.csv') # 对数值列进行标准化 scaler = StandardScaler() scaled_data = scaler.fit_transform(data[['OT', 'HUFL', 'HULL', ...]]) # 创建滑动窗口函数用于生成 X 和 y def create_sequences(data, seq_length): xs, ys = [], [] for i in range(len(data) - seq_length): x = data[i:i+seq_length] y = data[i+seq_length][0] # 假设预测目标是第一个变量 (例如 OT) xs.append(x), ys.append(y) return np.array(xs), np.array(ys) X_train, y_train = create_sequences(scaled_data[:train_size], window_size=96) ``` #### 构建Transformer模型架构 接下来定义一个基于 PyTorch 或 TensorFlow 实现的 Transformer 编码器结构。此部分会利用自注意力机制来自适应地加权不同位置的信息,并通过多层感知机进一步提取特征模式。 ```python import torch.nn as nn import torch class TimeSeriesTransformer(nn.Module): def __init__(self, input_dim, model_dim, num_heads, num_layers, output_dim, dropout=0.1): super().__init__() self.embedding_layer = nn.Linear(input_dim, model_dim) encoder_layer = nn.TransformerEncoderLayer(d_model=model_dim, nhead=num_heads, dim_feedforward=model_dim*4, dropout=dropout) self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) self.fc_out = nn.Linear(model_dim, output_dim) def forward(self, src): embedded_src = self.embedding_layer(src).permute(1, 0, 2) # 调整维度顺序适合Transformer transformer_output = self.transformer_encoder(embedded_src) prediction = self.fc_out(transformer_output[-1]) # 只取最后一个时间步的结果作为预测值 return prediction model = TimeSeriesTransformer( input_dim=X_train.shape[-1], model_dim=512, num_heads=8, num_layers=3, output_dim=1 ) ``` #### 训练过程与评估指标设定 完成上述准备工作之后就可以配置优化算法、损失函数来进行模型参数的学习;同时为了衡量模型表现还需要选定合适的评价标准如均方误差(MSE),平均绝对百分比误差(MAPE)等。 ```python criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) for epoch in range(num_epochs): optimizer.zero_grad() outputs = model(torch.tensor(X_train, dtype=torch.float)) loss = criterion(outputs.squeeze(-1), torch.tensor(y_train, dtype=torch.float)) loss.backward() optimizer.step() print(f'Final Loss: {loss.item()}') ``` 在测试阶段,则应采用相同方式准备验证/测试集上的输入向量并通过已训练好的模型得到对未来时刻观测值的估计结果。最后对比实际发生情况计算各项统计学度量得分以便全面了解所建立系统的准确性及可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dataloading...

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值