Transformer回归预测

一、Attention is all you need——李沐论文精读Transformer

论文地址:

https://arxiv.org/pdf/1706.03762.pdf

Transformer论文逐段精读【论文精读】
卷积神经网络对较长的序列难以建模,因为他每次看一个比较小的窗口,如果两个像素隔得比较远,要用到很多层卷积才能把隔得很远的两个像素融合起来。但是用Transformer一层就能把整个序列看到。但是卷积有一个好处就是一个输出通道可以认为它可以识别不一样的模式Transformer也想要这样子的多输出通道的效果,所以就提出了多头注意力

Transformer

二、李宏毅《深度学习》- Transformer
李宏毅《深度学习》- Transformer

三、Transformer & 时间序列预测
利用Transformer建立时间序列预测模型(附代码)

【长时间序列预测】Autoformer 代码详解之[1]数据预处理及数据读取

电力变压器数据集 (ETDataset)——ETT 时序数据
时序数据
【python量化】大幅提升预测性能,将NSTransformer用于股价预测

神经网络笔记一:Non-stationary Transformers: Exploring the Stationarity in Time Series Forecasting

NeurIPS2022 | NSTransformers: 非平稳时间序列的通用预测框架

Transformer论文详解——想不懂都难

四、transformer做预测模型
使用 Transformer 做预测 (代码+原理)

switch transformer

  • 3
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dataloading...

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值