高数叔建模第四章:相关分析方法与计算

两个变量间的相关系数(皮尔逊与斯皮尔曼)

使用条件

在这里插入图片描述

计算与检验

在这里插入图片描述

案例与计算

在这里插入图片描述

偏相关系数

使用条件

在这里插入图片描述

计算方法

在这里插入图片描述

例题

在这里插入图片描述

  • c a t ( ) cat() cat():用来连接数组
cat(2, A, B)# 相当于[A, B];
cat(1, A, B)# 相当于[A; B].

S p e a r m a n Spearman Spearman等级相关系数

使用条件及公式

在这里插入图片描述

  • 注意:两个变量的排列顺序要相同,都从大到小,或都从小到大

检验

在这里插入图片描述

  • 趋同关系,即显著的等级相关性

例题

在这里插入图片描述

K e n d a l l Kendall Kendall秩相关系数

概念及使用条件

在这里插入图片描述

计算公式及检验条件

在这里插入图片描述

程序计算

在这里插入图片描述

  • 后面两种相关系数的要求较宽松,精确性较低,如果条件较好,数据量较大,正态性相当满足,应当使用 P e a r s o n Pearson Pearson相关系数

单因素方差分析

使用背景

在这里插入图片描述

  • 自变量收集有困难时,不收集太多,只收集几个点,即分类数据

处理问题

  • 研究某个因素对某个对象是否有影响
  • 哪些因素是主要的,哪些是次要的
  • 每个因素位于何种水平时,对象最优

例题

在这里插入图片描述

  • 研究温度对着色度的影响

数学原理

在这里插入图片描述

通径分析

在这里插入图片描述

相关概念

在这里插入图片描述

  • 简单相关系数就是通径,包含了间接通径与直接通径

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

例题与程序

在这里插入图片描述

  • 取对数,是将非线性问题(幂函数模型)转为线性问题,指数反映的是因变量对自变量的弹性
  • 概率都小于0.05,三个变量都对因变量有影响,没有可以删除的数据

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

典型相关分析(多个相关的自变量与多个相关的因变量之间的关系)

在这里插入图片描述

  • 补充:要求总体数据符合正态分布

构造新的变量

在这里插入图片描述

  • 新构造的u与v是无关的

在这里插入图片描述

  • 如果u与v的数目不同,不用管

在这里插入图片描述
在这里插入图片描述

计算步骤

在这里插入图片描述
在这里插入图片描述

  • 这些系数就是正交阵的标准化的特征向量

在这里插入图片描述

  • 卡方检验

例子

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • zscore 标准化
      这种方法基于原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。
      zscore标准化方法适用于属性A的最大值和最小值未知的情况,或有超出取值范围的离群数据的情况。
      新数据=(原数据-均值)/标准差
    用法为:
Y=zscore(X)
# x为标准化之前的数据,y为标准化后的数据
  • 特点:
    (1)样本平均值为0,方差为1;
    (2)区间不确定,处理后各指标的最大值、最小值不相同;
    (3)对于指标值恒定的情况不适用;
    (4)对于要求标准化后数据 大于0 的评价方法(如几何加权平均法)不适用。

在这里插入图片描述

  • 解释: u 1 = 0.3498 x 1 − 1.0378 x 2 , v 1 = 0.8119 y 1 + 0.4204 y 2 + 0.0289 y 3 , r 1 = 0.7352 u_1=0.3498x_1-1.0378x_2,v_1=0.8119y_1+0.4204y_2+0.0289y_3,r_1=0.7352 u1=0.3498x11.0378x2,v1=0.8119y1+0.4204y2+0.0289y3,r1=0.7352

在这里插入图片描述

  • 原先的显著性概率为0.05,但是一组也没有满足,所以适当提高显著性概率为0.01,第一组通过,第二组未通过(灵活应对数据

在这里插入图片描述

  • 因为 v 1 和 u 1 v_1和u_1 v1u1的相关性高,所以 x 2 主 要 影 响 y 1 和 y 2 ( y 3 的 系 数 太 小 ) x_2主要影响y_1和y_2(y_3的系数太小) x2y1y2(y3)分析数据时要讨论主要数据

主成分分析

起源原因

  • 寻找重要因素
  • 综合评价要求评价指标线性无关
  • 建立回归模型的需要(回归模型要求自变量线性无关,样本点较大)

在这里插入图片描述

思想原理

在这里插入图片描述
在这里插入图片描述

  • x ∗ x^* x代表标准化后的数据
  • 信息量不可以受损,即新变量的方差之和要等于原来变量的方差之和( ∑ i λ i = p \sum_i\lambda_i=p iλi=p

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 由于之前的 Z Z Z互不相关,因此,除了主对角线,其余的协方差均为0

在这里插入图片描述

计算步骤

在这里插入图片描述
在这里插入图片描述

  • 建立相应主成分方程: 相应的特征向量单位化,正交化,变为正交阵,然后转置

在这里插入图片描述

案例分析

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 最大的特征值对应的特征向量在最后一列

在这里插入图片描述

  • 最重要的变量:在第一主成分里找数值最大的(橙色部分)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值