Piecewise classifier mappings:Learning fine-grained learners for novel categories with few examples

目录

Learning strategy and notations

Model

特征表示

分类器映射

网络训练


  • few-shot细粒度分类(FSFG,few-shot fine-grained recognition):用极少样本为新类别建立分类器。
  • piecewise mapping:示例到分类器映射策略,用BCNN特征以参数很少的方式学习判别式分类器。

Learning strategy and notations

元学习(meta-learning)框架为基础

分类器生成过程=映射函数(从少数带有类别标签的训练示例到其相应类别分类器

辅助训练集

(示例图像,标签)

测试集:存在中没有的新类别。

元训练集(meta-training set):从中随机采样,由示例集(每个类别含Ne示例图片)、查询集(每个类别含Nq查询图片)组成。

示例集查询集类别相同。

 

 示例集被输入到要学习的映射函数M中,以生成类别分类器。【学习了一个自己的表示,类似proxy】

 分类器应用于查询集以评估分类损失。

 通过最小化分类损失来学习映射功能:

λ表示映射函数 M的参数, L 是损失函数。

Model

特征表示

bilinear CNN (BCNN) structure
nA、nB输出维度,L空间位置

位置向量做外积生成特征图

nB个nA维短向量

类似于注意力机制中的乘法特征交互,关注目标的复杂局部。

属于类别k的Ne个样本图像的表示

【根据样本求平均作为类的表示】

分类器映射

通过映射 M 计算每个类别的 D 维分类器

global mapping:线性/非线性全连接映射

  1. 很难在如此复杂的特征空间寻找一个决策边界
  2. 参数爆炸

piecewise mappings:分段映射

  1. 子向量表示目标(双线性特征)的一部分
  2. 每个子向量经过非线性MLP(多层感知机)映射到子分类器
  3.  将子分类器组合在一起以生成全局类别分类器

 对全连接层分段,减少参数量,容易训练。

网络训练

查询样本x的类别标签y=c

预测分布:softmax【x和自己的表示内积更大】

损失函数:最小化负对数似然

  1.  从辅助训练集中采样得到示例集,学习得到分类器
  2.  从辅助训练集中采样得到查询集,最小化优化模型参数

【前向传播和反向传播使用的数据不同,但类别相同】

 

根据示例集前向传播得到Fk,代入查询集x计算loss反向传播。【元学习的设置】

测试:对测试集的每个类选择一个样本(五个样本),one-shot(five-shot),和示例集一样一次前向传播得到一个类别的分类器(类别中心)。在测试集里另外随机选20个样本用于评估性能。

查询样本与所有类别的分类器求内积,查询样本属于内积最大的分类器所代表的类别。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值