【工程实践】pytorch加速下载(conda与pip)

本文介绍了解决PyTorch与CUDA版本不匹配的问题,提供了通过conda和pip两种方式安装PyTorch的方法,并推荐了使用pip安装的方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.前言 

        工作环境中,因为环境统一升级,会出现torch和cuda版本不对应的现象,就需要根据服务器的cuda版本,下载相对应的pytorch。使用Start Locally | PyTorch官方网站提供的下载链接下载torch时,总是出现断线或下载失败现象,现在有两种办法解决上述问题。

2.解决方法

2-1 使用conda安装

1.首先使用使用nvcc-V 或nvidia-smi查看服务器cuda版本。

nvcc -V或nvidia-smi

 2.使用conda安装

安装前添加清华源,可以在终端创建的虚拟环境中输入下面的命令:

# 添加清华源的pytorch
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes

3.打开pytorch官网,根据conda版本选择下载命令

 官方的下载命令 :

conda install pytorch torchvision torchaudio cudatoolkit=11.6 -c pytorch -c conda-forge

 实际的下载命令:

conda install pytorch torchvision torchaudio cudatoolkit=11.6 

将下载命令后面的 -c pytorch -c conda-forge删除,才会用我们添加的清华源。

2-2 使用pip安装(推荐)

1.打开pytorch官网,根据pip命令和conda版本选择下载命令

 官方的下载命令为:

pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116

 2.临时换源

   下载时可以使用清华源进行临时换源,更改后的命令如下:

pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116 -i https://pypi.tuna.tsinghua.edu.cn/simple 

   平时使用pip下载别的包时,也可以使用临时换源提升下载速度,比如:

#下载时,将lightgbm更换为需要的包名即可​
pip install lightgbm -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com
 pip install selenium -i https://pypi.tuna.tsinghua.edu.cn/simple --trusted-host https://pypi.tuna.tsinghua.edu.cn

3.其他源 

清华:https://pypi.tuna.tsinghua.edu.cn/simple
中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/
华中理工大学:http://pypi.hustunique.com/
山东理工大学:http://pypi.sdutlinux.org/
豆瓣:http://pypi.douban.com/simple/
### 安装 PyTorch 时 `conda install` 和 `pip install` 的比较 #### 优点缺点 对于 Python 库管理工具而言,`pip` 是一个专注于管理和安装 Python 包的工具[^2]。然而,在处理涉及多种编程语言编写的软件包及其复杂依赖关系方面,`conda` 显示出了更大的灵活性和能力。 当考虑使用 `conda install` 来部署 PyTorch 及其相关组件(如 torchvision, torchaudio),主要优势在于能够更方便地创建隔离的工作环境,并且支持跨平台操作以及非 Python 资源的一键式获取[^1]。这使得它非常适合那些需要严格控制运行时配置的研究人员或开发者们。 另一方面,采用 `pip install` 方式则具有如下特点: - **轻量级**:不需要额外安装 Anaconda 或 Miniconda 发行版即可完成必要的设置工作; - **更新频率高**:由于维护者众多,某些第三方扩展可能只会提供给 pip 用户最新的版本发布。 但是需要注意的是,在特定硬件架构上(比如 GPU 加速计算环境中),如果想要获得最佳性能表现,则建议遵循官方文档推荐的方法来指定 CUDA 版本等参数[^4]。 #### 适用场景分析 针对不同需求选择合适的安装方式至关重要: - 如果目标是在 Windows、macOS 或 Linux 上快速搭建起一套完整的机器学习开发套件,并希望简化多语言库之间的兼容性问题解决过程,那么 `conda install` 将是更好的选项。 - 对于已经熟悉纯 Python 生态系统的个人项目或是小型团队来说,利用 `pip install` 进行本地化定制或许更加合适,尤其是在追求极致效率的情况下。 总之,无论是哪种途径都能满足大多数应用场景的需求,具体取决于用户的偏好和技术栈现状等因素影响。 ```bash # 使用 conda 创建并激活带有指定Python版本的新环境 (适用于降低冲突风险) conda create -n pytorch_env python=3.9 conda activate pytorch_env # 在该环境下执行 PyTorch及相关模块的安装命令 conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch ``` ```bash # 若倾向于使用 pip 工具链,则可以直接调用以下指令来进行相同的操作 pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值