【深度学习】Multi-Head Attention 原理与代码实现

1.Multi-Head Attention 结构

2.Multi-Head Attention 计算

        Multi-Head Attention 是由多个 Self-Attention 组合形成的。对于同一个文本,一个Attention获得一个表示空间,如果多个Attention,则可以获得多个不同的表示空间。基于这种想法,就有了Multi-Head Attention。换句话说,Multi-Head Attention为Attention提供了多个“representation subspaces”。因为在每个Attention中,采用不同的Query / Key / Value权重矩阵,每个矩阵都是随机初始化生成的。然后通过训练,将词嵌入投影到不同的“representation subspaces(表示子空间)”中。 

        将模型分为多个头,形成多个子空间,可以让模型去关注不同方面的信息。上图中Multi-Head Attention 就是将 Scaled Dot-Product Attention 过程做了8次,再把输出合并起来。

3.Multi-Head Attention 代码实现

from math import sqrt

import torch
import torch.nn as nn

class MultiHeadSelfAttention(nn.Module):
    dim_in: int  # input dimension
    dim_k: int   # key and query dimension
    dim_v: int   # value dimension
    num_heads: int  # number of heads, for each head, dim_* = dim_* // num_heads

    def __init__(self, dim_in, dim_k, dim_v, num_heads=8):
        super(MultiHeadSelfAttention, self).__init__()
        #维度必须能被num_head 整除
        assert dim_k % num_heads == 0 and dim_v % num_heads == 0, "dim_k and dim_v must be multiple of num_heads"
        self.dim_in = dim_in
        self.dim_k = dim_k
        self.dim_v = dim_v
        self.num_heads = num_heads
        #定义线性变换矩阵
        self.linear_q = nn.Linear(dim_in, dim_k, bias=False)
        self.linear_k = nn.Linear(dim_in, dim_k, bias=False)
        self.linear_v = nn.Linear(dim_in, dim_v, bias=False)
        self._norm_fact = 1 / sqrt(dim_k // num_heads)

    def forward(self, x):
        # x: tensor of shape (batch, n, dim_in)
        batch, n, dim_in = x.shape
        assert dim_in == self.dim_in

        nh = self.num_heads
        dk = self.dim_k // nh  # dim_k of each head
        dv = self.dim_v // nh  # dim_v of each head

        q = self.linear_q(x).reshape(batch, n, nh, dk).transpose(1, 2)  # (batch, nh, n, dk)
        k = self.linear_k(x).reshape(batch, n, nh, dk).transpose(1, 2)  # (batch, nh, n, dk)
        v = self.linear_v(x).reshape(batch, n, nh, dv).transpose(1, 2)  # (batch, nh, n, dv)

        dist = torch.matmul(q, k.transpose(2, 3)) * self._norm_fact  # batch, nh, n, n
        dist = torch.softmax(dist, dim=-1)  # batch, nh, n, n

        att = torch.matmul(dist, v)  # batch, nh, n, dv
        att = att.transpose(1, 2).reshape(batch, n, self.dim_v)  # batch, n, dim_v
        return att
### 回答1: 多头注意力代码Multi-Head Attention Code)是一种用于自然语言处理的机器学习技术,它可以帮助模型同时从多个表征空间中提取信息,从而提高模型的准确性。它的主要作用是通过使用多头的注意力机制,来计算输入的表征空间之间的相似性,从而使模型更加准确。 ### 回答2: multi-head attention是一种用于处理序列数据中的深度学习模型。它通过并行地学习多个注意力头,可以捕获不同远距离依赖关系和注意力机制在不同空间维度上的变换。下面是描述一个基本的multi-head attention代码。 首先,我们需要引入所需的Python库,包括numpy和torch: ```python import numpy as np import torch import torch.nn as nn import torch.nn.functional as F ``` 接下来,我们定义一个MultiHeadAttention类,继承自nn.Module类,以便在PyTorch中构建模型: ```python class MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.d_model = d_model self.query_fc = nn.Linear(d_model, d_model) self.key_fc = nn.Linear(d_model, d_model) self.value_fc = nn.Linear(d_model, d_model) self.fc = nn.Linear(d_model, d_model) def forward(self, query, key, value): batch_size = query.size(0) # 通过线性变换获得query、key和value query = self.query_fc(query) key = self.key_fc(key) value = self.value_fc(value) # 将输入的query、key和value分割为不同的注意力头 query = query.view(batch_size * self.num_heads, -1, self.d_model // self.num_heads) key = key.view(batch_size * self.num_heads, -1, self.d_model // self.num_heads) value = value.view(batch_size * self.num_heads, -1, self.d_model // self.num_heads) # 计算注意力得分 scores = torch.bmm(query, key.transpose(1, 2)) scores = scores / np.sqrt(self.d_model // self.num_heads) attn_weights = F.softmax(scores, dim=-1) # 使用注意力得分加权计算value output = torch.bmm(attn_weights, value) # 将分割的注意力头拼接起来 output = output.view(batch_size, -1, self.d_model) # 通过线性变换得到最终的输出 output = self.fc(output) return output ``` 在上面的代码中,我们首先定义了MultiHeadAttention类的初始化方法,在这个方法中,我们传入注意力头的数量num_heads和输入维度d_model。然后,我们定义了query、key和value的线性变换层。在forward方法中,我们首先通过线性变换得到query、key和value,然后将它们分成不同的注意力头。接下来,我们计算注意力得分,并使用注意力得分加权计算value。最后,我们将分割的注意力头拼接起来,并通过线性变换得到最终的输出。 以上就是一个基本的multi-head attention代码实现。在实际使用中,我们可以根据需求对其进行修改和扩展。 ### 回答3: multi-head attention是一种用于自然语言处理的注意力机制,用于对输入序列进行加权表示。在代码实现中,multi-head attention可以分为以下几个步骤: 1. 首先,需要定义输入序列x和相关的参数,如隐藏层大小和注意力头数。 2. 然后,将输入序列通过线性变换得到q、k和v矩阵,即对q、k、v分别乘以权重矩阵Wq、Wk和Wv。 3. 接下来,将q、k和v矩阵分别切分成多个头,即将q、k、v矩阵按行分成n个头。 4. 对于每个头,计算注意力权重。首先,计算q和k的点乘,然后除以一个可调节的缩放因子根号d,其中d为隐藏层大小。将结果通过softmax函数得到注意力权重。 5. 将注意力权重v矩阵相乘,得到每个头的加权表示。 6. 将每个头的加权表示拼接起来,得到最终的加权表示。 7. 最后,通过线性变换将加权表示映射回原始的隐藏层大小。 以上就是multi-head attention代码实现过程,通过这个过程可以对输入序列进行加权表示,从而提取关键信息。每个头的注意力权重计算可以独立进行,可以并行计算,提高了计算效率。multi-head attention在自然语言处理中应用广泛,如机器翻译、文本摘要等任务中都取得了很好的效果。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值