信号与系统 chapter6 时变与时不变系统

本文解析了时不变系统的基本概念,通过示波器例子说明其行为特点,并对比时不变系统与时变系统,重点讲解如何通过函数变换判断两者,以及zerostate和zeroinput的区别。最后,总结了时变系统中出现系数或反转等特征时,系统性质的变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时不变系统

通俗来说,就是输入延迟一段时间后,输出也延迟一段相同的时间。比如说一个示波器,你要给它上电显示波形,你就是示波器的输入,你一按下开关,它就马上亮了;下次你在开关上发呆5秒钟再按,示波器也会过5S才显示波形,这时候,你和示波器就组成了一个时不变系统。

时变系统

一个以上的参数值随时间而变化,从而整个特性也随时间而变化的系统

时不变系统在函数上的判断

y z s ( t ) = t f ( t ) y_{zs}(t)=tf(t) yzs(t)=tf(t)这里的zs下标代表的就是 z e r o . s t a t e zero.state zero.state 0状态响应,输入有延迟,从函数的角度来说就是给它左右平移(时不变系统的判断依据不是只有延迟,也有提前,站在函数左右平移的角度来看就完事了)。回到这个式子,你一看就知道这玩意它肯定不是时不变啊, f ( t ) f(t) f(t)前面挂了一个t,你左右平移函数,函数值直接扩大或者减小好几倍,这种类型的式子一看就不是时不变
同样的道理,试想一个信号如果被反转,那它是时变系统吗?
答案是肯定的,原因如下:
在这里插入图片描述
我们总结可以得到:若 f ( . ) f(.) f(.)前面出现系数,或者出现反转,展缩变换,那么它一定是时变系统
这样我们就可以得到线性时不变系统的判断方法
在这里插入图片描述
z e r o s t a t e zero state zerostate z e r o i n p u t zero input zeroinput要认识,不要搞混了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值