常见扩频序列

本文介绍了扩频通信的基本原理,重点探讨了PN序列和m序列在扩频系统中的应用。PN序列要求具有良好的自相关特性,而m序列则以其均衡性和优良的自相关函数在直扩和跳频系统中广泛使用。m序列的周期性、均衡性和游程分布特性被详细阐述,同时提到了其自相关函数的计算。此外,还讨论了Gold序列,它通过改进m序列的互相关特性,提供了更多的序列选择。这些序列在扩频通信中的重要作用在于提高系统安全性与抗干扰能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

扩频通信就要借助扩频序列
对扩频序列的要求如下:

  1. 具有尖锐的自相关特性
  2. 有尽可能小的互相关特性,最好为0
  3. 序列平衡,0与1的数量尽可能一样多
  4. 在扩频序列族中有数目足够多的序列可供选用
  5. 有尽可能大的序列复杂度
    常见的几种扩频序列
PN序列

第一类PN序列具有良好的自相关特性
第二类PN序列具有良好的互相关特性,可以拿来作为系统的扩频序列,但不能用作启动系统的同步,自相关特性好的第一类广义PN序列,属于狭义PN的m序列,可以作为能完成同步的扩频序列

m序列

m序列的全称是最大长度线性反馈位移寄存器序列,二元m序列是一种狭义伪随机序列,有优良的自相关函数,易于产生与复制,在扩展频谱技术中得到了广泛的应用,在直扩系统中用于扩展基带信号,在跳频扩频系统中用来控制跳频频率合成器,组成随机跳频方案

n级线性反馈移位寄存器的反馈逻辑可以使用多项式来表示:

f ( x ) = c 0 + c 1 x + c 2 x 2 + . . . c n x n f(x)=c_0+c_1x+c_2x^2+...c_nx^n f(x)=c0+c1x+c2x2+...cnxn
称为本源多项式
本源多项式的条件

  1. f ( x ) 不 能 再 被 分 解 因 式 f(x)不能再被分解因式 f(x)
  2. f ( x ) 可 以 整 除 x m + 1 , 这 里 m = 2 n − 1 f(x)可以整除x^m+1,这里m=2^n-1 f(x)xm+1m=2n1
  3. f ( x ) 不 可 以 整 除 x q + 1 f(x)不可以整除x^q+1 f(x)xq+1,这里q<m
    知道生成多项式可以推出m序列,反之也可以, ( 45 ) 8 (45)^8 (45)8 100101 这里注意是8进制,不要搞错了 g ( x ) = x 5 + x 2 + 1 g(x)=x^5+x^2+1 g(x)=x5+x2+1
    ( 75 ) 8 (75)^8 (75)8 111101
    f ( x ) = x 5 + x 4 + x 3 + x 2 + 1 f(x)=x^5+x^4+x^3+x^2+1 f(x)=x5+x4+x3+x2+1
    n = 5 n=5 n=5 p = 2 5 − 1 p=2^5-1 p=251
    可以从本源多项式的系数表中查出有两个多项式,就是上面两个多项式
    在这里插入图片描述
m序列的伪随机特性

周期性:周期是 p = 2 n − 1 p=2^n-1 p=2n1
均衡性:在每一周期内,0出现 2 n − 1 − 1 2^{n-1}-1 2n11次,1出现 2 n − 1 2^{n-1} 2n1次,1比0多出现一次
游程分布:在每一周期内,共有 2 n − 1 2^{n-1} 2n1个游程,0与1各占一半
位移相加性:m序列与其位移序列的模2和仍是m序列的另一位位移序列

m序列的自相关函数

R ( j ) = A − D A + D R(j)=\frac{A-D}{A+D} R(j)=A+DAD
A表示序列与其位移序列对应位元素相同的个数,D表示对应位元素不同的个数
A + D = P A+D=P A+D=P
R ( j ) = 1 / / j = 0 / / m o d p R(j)=1 //j=0// mod p R(j)=1//j=0//modp
R ( j ) = − 1 p j ! = 0 / / m o d p R(j)=-\frac{1}{p} j !=0//mod p R(j)=p1j!=0//modp
j=0 自相关函数出现峰值1
j偏离0,相关函数曲线下降,1<=j<p时相关函数值为-1/p,j=p又出现峰值1

gold序列

改善了m序列的互相关特性
gold序列书比m序列多的多的多

gold序列的产生方式
  1. 由串联成2n级的线性移位寄存器
  2. 由产生m序列优选对的两个n级移位寄存器并联而成
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值