前言
近年来,肺癌的发病率和病死率均迅速上升,目前已居所有癌症之首。随着肺癌病人数量的增加,医生对肺部 CT 图像进行研判的工作量也增加了不少,在这种情况下难免工作效率降低甚至会出现误诊。为了帮助医生减少重复性工作,对肺部 CT 图像进行计算机辅助检测的技术就被广泛应用于对肺癌的诊断和治疗过程中。
医学 CT 图像处理主要是研究医学图像中的器官和组织之间的关系,并进行病理性分析。因此,借助计算机及图像处理技术对 CT 图像中医生所关注的区域进行精确的分割和定位是医学图像处理的关键步骤,在临床诊断中对于协助医生进行病理研判具有重要意义。
分水岭分割是一种强有力的图像分割方法,可以有效地提取图像中我们所关注的区域。在灰度图像中使用分水岭方法可以将图像分割成不同的区域,每个区域都可能对应一个我们所关注的对象,对于这些图像的子区域可以进行进一步的处理。除此之外,使用分水岭方法还可以提取目标的轮廓等特征。
本案例通过对标记分水岭图像分割方法的实验进行改进,提出了一种简捷、高效的肺部 CT图像实质分割方法。
一、理论基础
分水岭算法以数学形态学图像处理为基础,属于基于区域的图像分割算法。该算法最初的思想来源于地形学,假设将一幅图像看作一个立体的地形表面,且图像中每个像素点的海拔高度都由该点的灰度值表示,则图像
本文探讨了基于分水岭算法的肺癌诊断技术,通过模拟浸水和降水过程解释了分水岭分割原理,针对过度分割问题提出了标记分水岭分割方法。在肺部CT图像处理中,结合梯度边缘检测,实现了对病变和正常肺部的准确分割,有助于提高医学诊断效率和准确性。
订阅专栏 解锁全文
917

被折叠的 条评论
为什么被折叠?



