为什么日活/月活能衡量用户粘性?

文章通过分析日活跃用户数(日活)与月活跃用户数(月活)的比率,揭示了其能反映用户粘性的原理。通过取极值方法,展示了从所有用户每天使用到仅使用一天的各种情况,证明日活/月活与用户使用频率正相关,比率大于0.5被认为是世界水准。同时,讨论了该指标在不同产品类型和生命周期阶段的应用意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

是在一篇段永平的访谈文章中看到这个指标,日活/月活,用于衡量社交产品的用户粘性,比率越大粘性越好,比率大于0.5的产品是世界水准。

起初对这个指标一扫而过,有一点定性的判断,但刨根问底的劲头出来了谁也拦不住,究竟为什么能衡量产品的用户粘性?于是用高中数学取极值的方法,对这个指标分析了一下,和大家分享。

指标澄清

首先澄清一下这个指标的分子和分母。

日活指的是一天内使用产品的独立用户数。活跃点可根据产品定位自定义,且和活跃次数无关,也就是说1个人1天使用产品100次,只计算为1个日活,100个人,1天只使用产品1次,也计算为100个日活。而日活/月活指标中的分子,指的是月活统计周期内的平均日活。假设月活统计周期为30天,每天日活分别为(d1、d2、d3……d28、d29、d30),则平均日活为(d1+d2+d3……d28+d29+d30)/30。

月活指的是1个月内使用产品的独立用户数,其实就是将日活的统计周期扩大为1个月。

指标分析

现在我们通过取极值的方法,对日活/月活进行分析。

月活统计周期为30天,在这30天中,平均日活为D=(d1+d2+d3……d28+d29+d30)/30,月活=M。

极值1:全部用户每天都来
D=(M+M+M……M+M+M)/30=30M/30=M,日活/月活=1
极值2:一半用户单数天来,一半用户双数天来
D=(1/2M+1/2M+1/2M……1/2M+1/2M+1/2M)/30=15M/30=1/2M,日活/月活=1/2
极值3:全部用户只来1天,为方便统计,假设都在第1天来
D=(M+0+0……0+0+0)/30=M/30,日活/月活=1/30

我们可以看到,在统计周期内,用户使用产品的频率越小,日活/月活就越小,由此可证明日活/月活和用户使用产品的频率(以日为单位)正相关,日活/月活确实能衡量用户粘性。

几个注意点

日活/月活在理论上的区间为[1/30,1],但在现实世界中,没有产品能达到1,据说微信的最高值是0.85。2018年8月抖音傲娇地宣布,日活突破1.5亿,月活突破3亿,算一算,日活/月活达到0.5。这样看来,日活/月活>0.5的产品是世界水准,这个说法好像也并不夸张。

举一反三,日活/月活代表用户粘性,月活/日活代表什么?代表的是月统计周期内的活跃周期,可以简单理解为用户平均在几天内至少活跃一次。还是拿极值来证明。用户每天都来,月活/日活=1;用户隔一天来一次(2天活跃一次),月活/日活=2;用户30天才活跃一次,月活/日活=30。

日活/月活,不同类型产品间的差异较大。社交类产品,用户可能每天都会使用,日活/月活接近于1;公积金社保查询等民生类的产品,用户可能1个月才使用1次,日活/月活接近于1/30,但这并不能说明此类产品对用户没有粘性。不同类型的产品间比较日活/月活没有意义,而在同类产品间,由于日活月活都是可以从公开市场上拿到的数据,日活/月活可以作为比较粘性高低的一个关键指标。

日活/月活,也受到产品所处发展阶段的影响。产品上线初期,日活用户数中新增用户占比较大,留存不稳定,导致日活较小,月活较大,日活/月活较小;产品发展阶段,各项功能逐渐完善,留存趋于稳定,日活/月活会逐渐上升。产品成熟阶段,日活用户数中老用户比例逐渐上升趋于稳定,日活/月活也会达到一个稳定状态,此时日活/月活最能代表产品的用户粘性。

产品经理们,你们手上的产品日活/月活是多少呢,如果达到了世界水准,记得向老板提要求年终奖double :)

一、课程简介随着技术的飞速发展,经过多年的数据积累,各互联网公司已保存了海量的原始数据和各种业务数据,所以数据仓库技术是各大公司目前都需要着重发展投入的技术领域。数据仓库是面向分析的集成化数据环境,为企业所有决策制定过程,提供系统数据支持的战略集合。通过对数据仓库中数据的分析,可以帮助企业改进业务流程、控制成本、提高产品质量等。二、课程内容本次精心打造的数仓项目的课程,从项目架构的搭建,到数据采集模块的设计、数仓架构的设计、实战需求实现、即席查询的实现,我们针对国内目前广泛使用的Apache原生框架和CDH版本框架进行了分别介绍,Apache原生框架介绍中涉及到的技术框架包括Flume、Kafka、Sqoop、MySql、HDFS、Hive、Tez、Spark、Presto、Druid等,CDH版本框架讲解包括CM的安装部署、Hadoop、Zookeeper、Hive、Flume、Kafka、Oozie、Impala、HUE、Kudu、Spark的安装配置,透彻了解不同版本框架的区别联系,将大数据全生态系统前沿技术一网打尽。在过程中对大数据生态体系进行了系统的讲解,对实际企业数仓项目中可能涉及到的技术点都进行了深入的讲解和探讨。同时穿插了大量数仓基础理论知识,让你在掌握实战经验的同时能够打下坚实的理论基础。三、课程目标本课程以国内电商巨头实际业务应用场景为依托,对电商数仓的常见实战指标以及难点实战指标进行了详尽讲解,具体指标包括:每、周、跃设备明细,留存用户比例,沉默用户、回流用户、流失用户统计,最近连续3周用户统计,最近7天内连续3天用户统计,GMV成交总额分析,转化率及漏斗分析,品牌复购率分析、订单表拉链表的设计等,让学生拥有更直观全面的实战经验。通过对本课程的学习,对数仓项目可以建立起清晰明确的概念,系统全面的掌握各项数仓项目技术,轻松应对各种数仓难题。四、课程亮点本课程结合国内多家企业实际项目经验,特别加入了项目架构模块,从集群规模的确定到框架版本选型以及服务器选型,手把手教你从零开始搭建大数据集群。并且总结大量项目实战中会遇到的问题,针对各个技术框架,均有调优实战经验,具体包括:常用Linux运维命令、Hadoop集群调优、Flume组件选型及性能优化、Kafka集群规模确认及关键参数调优。通过这部分学习,助学生迅速成长,获取前沿技术经验,从容解决实战问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

1024小神

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值