微多普勒效应学习【2】

1. 对两个目标产生的叠加微多普勒图像处理

1.1. 背景介绍

考虑一辆配有FMCW汽车雷达系统的自动驾驶汽车,其带宽为250兆赫,工作频率为24兆赫。小轿车正沿着马路行驶。在路上,有一辆车停在路边,一个人正从车后面走出来。场景如下图所示:

通过对该模型建模之后得到了range-doppler的二维图像:建模参考了该博主给出的原理。下图显示了汽车雷达随时间变化产生的距离-多普勒图。由于停放的汽车是比行人更强的目标,行人很容易被停放的汽车在距离-多普勒地图上的阴影。因此,地图总是显示一个单一的目标。

这意味着在这种情况下,传统的加工(range-doppler)已经不能满足我们的需求。时频域微多普勒效应是识别雷达信号中是否含有行人特征的一种很好的方法。 

时频域微多普勒处理

作为一个例子,下面的部分模拟雷达返回2.5秒时间内的图像,首先可以通过仿真单独的到行人的时频域多普勒图像:

注意手臂和腿的摆动会在时间-频率域产生许多抛物线曲线。因此,这些特征可以用来判断场景中是否存在行人。然而,在实际情况下,接收端接收到的雷达信号往往是所有目标物体的叠加,也就不仅仅是行人的回波,还包括了街边静止汽车的雷达回波,因此接收端实际的多普勒图像如下图所示:

我们观察到的是,即使在时频域,停着的汽车返回的雷达回波依然占据主导,行人的多普勒信息被淹没在了汽车的信息之中,因此要查看强返回后面是否隐藏着一个弱返回,我们可以使用奇异值分解

奇异值分解

对雷达回波信号xd进行奇异值分解:

[uxd,sxd,vxd] = svd(xd);
clf
plot(10*log10(diag(sxd)));
xlabel('Rank');
ylabel('Singular Values');
hold on;
plot([56 56],[-40 10],'r--');
plot([100 100],[-40 10],'r--');
plot([110 110],[-40 10],'r--');
text(25,-10,'A');
text(75,-10,'B');
text(105,-10,'C');
text(175,-10,'D');

分解后的图像如下图所示:

从曲线上可以清楚地看出,大约有四个区域。区域A代表了对信号贡献最大的区域,也就是停着的汽车。区域D代表噪声。因此,B区和C区是由于停车返回和行人返回的混合。因为行人返回的能量要比停着的汽车返回的能量弱得多。在B区域,它仍然可以被从停放的汽车返回的残留物掩盖。因此,我们选择C区域重构信号,然后重新绘制时频响应图。

rk = 100:110;
xdr = uxd(:,rk)*sxd(rk,:)*vxd';
clf
spectrogram(sum(xdr),kaiser(128,10),120,256,1/Tsamp,'centered','yaxis');
clim = get(gca,'CLim');
set(gca,'CLim',clim(2)+[-50 0])

当从汽车返回的信号被成功过滤后,来自行人的微多普勒信号就出现了。因此,我们可以断定现场有行人,并采取相应的行动,避免了事故的发生。

References

[1] Chen, V. C., The Micro-Doppler Effect in Radar, Artech House, 2011

[2] Chen, V. C., F. Li, S.-S. Ho, and H. Wechsler, "Micro-Doppler Effect in Radar: Phenomenon, Model, and Simulation Study", IEEE Transactions on Aerospace and Electronic Systems, Vol 42, No. 1, January 2006

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值