LLM|利用Ollama搭建个人本地知识库

最近一直想基于RAG(检索增强生成,Retrieval-Augmented Generation)和大预言模型(Large Language Model, LLM)技术搭建一套属于自己的个人知识库,以为会涉及到诸多复杂的流程,包括模型调用、界面开发等。今天找到了一点资料,发现特别简单,花了几分钟实现了一下,主要用到了三个软件:

  • Ollama
  • Docker
  • AnythingLLM

1 基本资料介绍

大预言模型已经很常见了,包括ChatGPT、Claude、通义千问等等,此处就不再过多介绍了,这里主要介绍用到的几个软件和基本技术。

1.1 RAG

检索增强生成(RAG)是指对大型语言模型输出进行优化,使其能够在生成响应之前引用训练数据来源之外的权威知识库。大型语言模型(LLM)用海量数据进行训练,使用数十亿个参数为回答问题、翻译语言和完成句子等任务生成原始输出。在 LLM 本就强大的功能基础上,RAG 将其扩展为能访问特定领域或组织的内部知识库,所有这些都无需重新训练模型。这是一种经济高效地改进 LLM 输出的方法,让它在各种情境下都能保持相关性、准确性和实用性。
RAG技术流程

与RAG并生的另一种技术叫监督式微调(SFT),是将LLM模型注入新的知识库并将模型本身进行训练以获得所需要的结果,需要有一定的硬件设备。两种技术并不矛盾,其实互相结合才是最好的解决方案。本文不对此过多介绍,具体可网上搜索相关概念。

1.2 Ollama

ollama是一个开源的大型语言模型服务工具,它允许用户在自己的硬件环境中轻松部署和使用大规模预训练模型。 Ollama 的主要功能是在Docker容器内部署和管理大型语言模型(LLM),使得用户能够快速地在本地运

### 使用 Ollama 和 DeepSeek 构建本地知识库 #### 工具简介 Ollama 是一种用于管理和运行大型语言模型 (LLM) 的工具,支持多种预训练模型并允许用户轻松部署这些模型到本地环境。DeepSeek 则是一系列高性能的大规模语言模型,能够提供高质量的回答和推理能力[^3]。 为了构建一个高效的本地知识库系统,可以结合 Dify 或 Cherry Studio 进行前端界面设计以及数据管理功能扩展,同时利用 BGE-M3 向量模型实现文档嵌入与检索优化[^2]。 #### 安装配置流程 以下是具体操作指南: 1. **安装 Ollama** 首先下载最新版本的 Ollama 并设置自定义存储路径以便更好地控制磁盘空间分配情况。 ```bash curl -fsSL https://ollama.ai/install.sh | sh ollama install deepseek/... --path /your/custom/path/ ``` 2. **加载所需模型** 下载适合当前应用场景的目标 LLM 及其配套组件(如 embedding generator),这里推荐选用 DeepSeek 系列中的某一款作为主要对话引擎,并搭配高效能向量化解决方案——BGE-M3 来增强语义理解效果[^1]。 3. **准备待处理资料集** 将所有希望纳入索引范围内的文件整理成统一格式(例如纯文本、HTML 页面等),并通过脚本批量转换为标准化输入形式供后续环节调用。 4. **执行内容解析与特征提取** 借助专门开发的数据管道技术栈完成自然语言分词、关键词抽取等工作项;随后运用选定好的 Embedding 方法生成对应维度表示向量集合保存至数据库表单当中等待查询匹配时刻到来时发挥作用。 5. **集成展示层逻辑代码片段** 设计友好的交互式图形化用户接口(GUI),让用户可以通过简单直观的操作方式提交问题请求得到即时反馈结果。此部分可参考官方样例项目或者第三方贡献资源自行调整样式风格满足个性化需求。 ```python from langchain.embeddings import HuggingFaceEmbeddings embedding_model = "BAAI/bge-base-en-v1.5" embedder = HuggingFaceEmbeddings(model_name=embedding_model) def embed_text(texts): embeddings = embedder.encode(texts, normalize_embeddings=True) return embeddings.tolist() ``` #### 注意事项 在整个实施过程中需要注意保持各子模块间良好协作关系的同时兼顾性能表现指标评估工作,确保最终产物既具备实用性又能达到预期质量标准水平线之上。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值