商品画像分析
此次针对亚马逊曝光的裙子类目进行分析,即在亚马逊的裙子页面,进行翻页抓取曝光的数据
通过分析曝光价格的帕累托图可以让新上架的商品选择一个更容易畅享的价格,如下图所示,要是新上架的一个裙子定价在9美金,想着价格便宜可以买的多,但实际上价格分布在20-30美金的才是主流的价格,而且9美金的商品成品也不高,做工也不会好到哪。
一般而言,累计平均数可以帮你了解整体的走势,可以看到,先增加后慢慢降低,
首先观察到0-0.2披风评分的商品很高多,也正常,很多商品也没有评分,默认就为0。但是4.8-5.0高就很不正常,一般而言评分要是呈正态分布的,最高点一般在4.2分左右,又慢慢降下来,但是到4.8又飙升这很不正常,就是刷单的
可以根据评分数量的多少来大致看出历史销量的多少,例如100个人买了可能有10个评论,可以看出排在头部的商品历史销量较高,之后就下滑下滑。一般而言,竞争激烈的类目才会出现二八分布,要是竞争不激烈的商品,用户会通过兴趣导向购买,消费者会耐心挑选适合的商品,就不会呈现二八分布
可以看出平均累计评分在1000个商品之后是呈下降的趋势,前200个商品有一点小插曲,具体我们看一下
我们看一下前500个商品,发现一开始的商品评分突然飙升,后慢慢降低,只要原因是排名靠前的一些商品是通过刷单的行为冲上去的,之后下降也正常,毕竟大多数商家是正常销售的。之后又慢慢上升是怎么回事呢,通过历史销售额的图可以看出,排名在150之后的商品历史销售数量并不多,控制评分的问题就相对简单了,这可以通过一些小手段在提高自己的评分,例如给五星好评送现金什么的。当销售数量逐渐增多的时候,就会出现很多买家没有评分的情况,就会慢慢拉低平均评分了
从排名柱状图可以看出,大部分商品的排名在200多万名,少数商品排在前列