小白复现yolov11训练自己数据集过程中出现自制数据集yaml文件不可用、cuda版本不匹配、vscode实验室服务器ssh不连接以及训练后预测框过大等问题

本人参照YOLOv11来了,使用YOLOv11训练自己的数据集和推理(附YOLOv11网络结构图)-CSDN博客对yolov11进行复现自己制作的rgb数据集,复现过程重点出现了自制数据集yaml文件不可用、cuda版本不匹配、vscode实验室服务器ssh不连接以及训练后预测框过大等4个问题,本文对上述问题进行记录,并介绍一下问题形式、可能原因及解决办法,希望能对大家有帮助。

 一、自制数据集yaml文件不可用问题

(本阶段训练指令代码是我在自己电脑上试运行,尚未使用实验室服务器)

本人数据集使用labelme进行标注工作,如图

根据网上提供思路,我对yolov11文件夹中的./ultralytics/cfg/datasets/coco.yaml根据自己数据集类别和路径进行更改,并将自制数据集和我更改的配置文件vmd_coco.yaml都放在了coco.yaml配置文件中要求的路径./ultralytics/datasets,如下图部分

运行训练指令(如下)

yolo task=detect mode=train data='D:\Postgraduate Study\Lab Work\Projects\yolov11\ultralytics\datasets\vmd_coco.yaml' epochs=5 batch=64 device=cpu single_cls=False pretrained='.\yolo11s.pt'   

报错,提示修改settings.json,以上为错误现象。

<
YOLO系列是基于深度学习的端到端实时目标检测方法。 PyTorch版的YOLOv5轻量而性能高,更加灵活和易用,当前非常流行。 本课程将手把手地教家使用labelImg标注和使用YOLOv5训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。 本课程的YOLOv5使用ultralytics/yolov5,在Windows系统上做项目演示。包括:安装YOLOv5、标注自己的数据集、准备自己的数据集、修改配置文件、使用wandb训练可视化工具、训练自己的数据集、测试训练出的网络模型和性能统计。 希望学习Ubuntu上演示的同学,请前往 《YOLOv5(PyTorch)实战:训练自己的数据集(Ubuntu)》课程链接:https://edu.csdn.net/course/detail/30793  本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括:《YOLOv5(PyTorch)目标检测实战:训练自己的数据集》Ubuntu系统 https://edu.csdn.net/course/detail/30793Windows系统 https://edu.csdn.net/course/detail/30923《YOLOv5(PyTorch)目标检测:原理与源码解析》课程链接:https://edu.csdn.net/course/detail/31428《YOLOv5目标检测实战:Flask Web部署》课程链接:https://edu.csdn.net/course/detail/31087《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》课程链接:https://edu.csdn.net/course/detail/32303《YOLOv5目标检测实战:Jetson Nano部署》课程链接:https://edu.csdn.net/course/detail/32451《YOLOv5+DeepSORT多目标跟踪与计数精讲》课程链接:https://edu.csdn.net/course/detail/32669《YOLOv5实战口罩佩戴检测》课程链接:https://edu.csdn.net/course/detail/32744《YOLOv5实战中国交通标志识别》课程链接:https://edu.csdn.net/course/detail/35209《YOLOv5实战垃圾分类目标检测》课程链接:https://edu.csdn.net/course/detail/35284       
<think>嗯,用户问的是YOLOv11分类数据集是否可以用YAML文件。首先,我需要确认YOLOv11的存在,因为YOLO系列通常到YOLOv5之后有v7、v8、v9,还有YOLO by Ultralytics的版本。可能用户指的是某个变体或误写的版本,比如YOLOv8?或者可能是某个社区版本YOLOv11?需要先核实这一点。 假设用户指的是某个YOLO版本用于分类任务,通常分类任务的数据集组织和检测任务同。检测任务使用YAML文件来指定类别、路径等,比如在YOLOv5中。而分类任务的数据集结构通常是目录结构,比如train和val文件夹下每个类别一个子文件夹,可能需要YAML文件。 接下来,检查Ultralytics的YOLO分类实现,比如YOLOv5-cls或YOLOv8-cls,它们的分类任务是否需要YAML。根据文档,分类模型通常直接读取目录结构,而YAML用于检测的配置,比如模型结构、超参数等,而数据集路径。因此,可能分类任务需要YAML文件来定义数据集,而是通过文件夹自动识别类别。 但用户可能看到检测任务用YAML,所以疑惑分类是否也能用。需要解释两者区别,说明分类数据集的结构,以及YAML在检测中的作用,比如指定训练、验证路径和类别数,而分类直接通过文件夹结构确定类别,因此需要YAML。同时,如果有特殊情况需要YAML,可能需要自定义数据加载方式,但标准流程推荐。 总结:分类任务通常用目录结构,YAML用于检测任务的数据集配置,因此YOLOv11(假设存在)的分类数据集需要YAML文件。需要提示用户确认YOLO版本,并建议正确的数据集组织形式。</think>关于YOLOv11分类任务与数据集配置的问题,以下是分步说明: 1. **YOLO版本确认**: - 目前官方YOLO系列最新版本为Ultralytics维护的YOLOv8,未出现v9-v11的官方版本 - 若您使用的是社区改进版模型,需确认其是否支持分类任务 2. **分类任务数据集规范**: ✅ 正确方式:采用标准目录结构 ``` dataset/ train/ class1/ img1.jpg img2.jpg class2/ img3.jpg val/ class1/ img4.jpg class2/ img5.jpg ``` ❌ 需要YAML文件:分类任务通过目录结构自动识别类别 3. **YAML文件的作用场景**: - 目标检测任务:用于定义: ```yaml path: ../datasets/coco train: train2017.txt val: val2017.txt names: 0: person 1: car ``` - 实例分割任务:定义mask标注路径 - 分类任务:无需此类配置 4. **特殊需求解决方案**: 若必须使用YAML文件,需自定义数据加载器: ```python # 示例伪代码 def load_from_yaml(cfg): classes = cfg['classes'] img_paths = parse_paths(cfg['train']) return CustomDataset(img_paths, classes) ``` 5. **最佳实践建议**: - 使用`torchvision.datasets.ImageFolder`标准接口 - 保持目录结构与类别名称一致 - 验证集需保持与训练集相同的类别结构 建议通过以下命令验证数据集: ```bash tree dataset/train/ -L 2 # 应显示: # dataset/train/ # ├── class1 # └── class2 ``` 请根据实际使用的代码库文档确认具体要求,同实现可能有细微差异。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值