Drug Similarity Integration Through Attentive Multi-view Graph Auto-Encoders通过带注意力的多视图图自动编码器的药物相似性集成

Drug Similarity Integration Through Attentive Multi-view Graph Auto-Encoders

通过带注意力的多视图图自动编码器的药物相似性集成

摘要

在本文中,我们建议从多种类型的药物特征中学习准确且可解释的相似性度量。特别是,我们使用多视图图形自动编码器对集成进行建模,并添加注意机制来确定每个视图相对于相应任务和特性的权重,以获得更好的可解释性。

4 方法

在本文中,我们将每种类型的药物特征视为一个视图。对于视图在这里插入图片描述
我们通过将每种药物建模为一个节点,将两个节点之间的相似性建模为一条边来构建一个图。我们将节点特征嵌入表示为
Z(u)
并使用相似性矩阵
在这里插入图片描述

来表示该视图上药物之间的成对相似性。给定T个不同的视图,多视图相似性集成的任务是推导出一个跨所有视图的集成节点嵌入Z和相似性矩阵A

4.1 与多视图图形自动编码器的相似性集成

多视图的基本图形网络结构

给定每个视图u的节点嵌入Z(u),我们连接每个视图的嵌入Z(u),以获得节点的新表示Z在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
两个节点之间的预测可以由sigmoid函数完成,如下:
在这里插入图片描述
该方法的结构如下所示:
在这里插入图片描述

相似矩阵融合

我们也可以首先获得一个集成的相似性矩阵,并为所有视图只构建一个图,而不是将不同视图中的节点嵌入连接起来。在此单一图形中,所有视图的节点特征都是固定的。考虑到归一化的复杂性,为了融合相似性,我们首先归一化所有的相似性矩阵,归一化后的相似性矩阵表示为:
在这里插入图片描述
然后聚合所有的相似性矩阵,得到一个综合的相似性矩阵作为图的邻接矩阵:
在这里插入图片描述
在这里插入图片描述是不同相似性矩阵的混合权重。我们使用一个单层的GraphCNN来编码:
在这里插入图片描述
之后,我们将嵌入解码回原始特征空间
在这里插入图片描述
损失如下
在这里插入图片描述

带关注力的视图选择

在实践中,每个视图的融合可能是非线性的,而每个视图中特征的权重需要由数据和目标任务来决定。考虑到这种灵活性,在本节中,我们通过将来自不同视图的特征与注意机制相融合来扩展混合方案,其中特征的权重由相应的输入来确定。注意视图选择方案如图2所示。

假设我们有每个视图的邻接矩阵
在这里插入图片描述
我们给图的边分配关注力权重
在这里插入图片描述
对于每个视图,我们首先将原始邻接矩阵投影到一个非归一化矩阵
在这里插入图片描述
然后在不同的视图上归一化它们以获得关注权重
在这里插入图片描述
我们把gu限定为一个向量,并构成加权相似矩阵
在这里插入图片描述
带注意力的相似矩阵如下
在这里插入图片描述

然后我们对它们进行归一化,得到每个position i 的注意力权重:
在这里插入图片描述
在这里插入图片描述
最终的相似矩阵为
在这里插入图片描述
在我们得到新的基于注意力的相似度矩阵A后,我们可以使用与4.2和4.3相同的框架。

4.2 给定部分标记数据的半监督扩展

我们可以保持自动编码器框架不变,并使用网络h: h(Z) = Softmax(WZ + b)预测训练数据上的标签。h的预测损失如下
在这里插入图片描述
新模型将两个损失函数整合为其目标函数
在这里插入图片描述

4.3 使用测试标签作为变量的转换学习

有时,当我们只有相似性矩阵的图结构而没有节点特征。这促使我们开发另一个方案来扩展之前引入的图形自动编码器,以改善没有节点特征的学习。
我们不使用GAE的原始节点特征或单热点节点向量,而是考虑一种替代方法:我们使用训练标签(即每个节点的DDI链接)作为输入,并使用与图1©中相同的GAE结构来重建它们。因此图形自动编码器将输出预测的链接
在这里插入图片描述
此外,如果我们将相似性视为图的边,测试节点的标签也会影响训练节点的解码。因此,我们采用了一种转换方法来使用测试标签作为附加的潜在变量。标签的预测如下:
在这里插入图片描述
该模型的目标函数由下式给出:
在这里插入图片描述

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值