【论文阅读】Drug Similarity Integration Through Multi-view Graph Auto-Encoders | day4、5

2018年International Joint Conference on Artificial Intelligence国际人工智能联合会议


前言

药品相似度集成,利用注意力机制下的多视图自编码器实现。

  一、待解决的问题:
  1.不同类型的特征对目标的影响大小不同。例如:药物结构相似性比药物适应症相似性(药物可替代性)对药物的相互作用影响更大。
  2.生物医学之间的潜在关系。例如:两种药品共同作用发生副作用。这一属性,是非线性且复杂的。
  3.数据质量。缺少标签与噪声问题。

  二、解决方案:
  1.将每种药物特征视为一个视图,采用多视图自编码器GAE。
  2.药物网络中每个药物是一个节点。
  3.使用图卷积网络嵌入节点特征和边。
  4.使用注意力机制融合多视图。

  三、贡献
  1.一种可解释、自适应的多视图融合方法。
  2.可预测未标记数据。
  3.减小了药物间存在的隐层相互作用和”未标记阳性“样本带来的负面影响。

  四、现有方法
  1.最近邻居法。
  2.随机游走法。
  3.无监督方法
  4.多核学习法。

  背景:基于一种方法的扩展。在“重构边链接和重构节点嵌入”,允许归纳预测。
  该方法改进了图卷积神经网络。构造了一个利用图卷积神经网络实现节点分类和链路预测的图自编码器。
  该方法只能重构边,不能处理隐性信息。

  药物的每个特征为一个视图。
  构建一个以药物为节点的图。边表示两节点(药物)的相似度。
  每个视图,有一个节点嵌入特征记为z,一个相似度矩阵A表示药物之间的配对相似性。
  给定T个视图。多视图相似度集成的目标是获得集成节点嵌入表示Z和相似度矩阵A。


提示:以下是本篇文章正文内容,下面案例可供参考

一、基于注意力机制的多视图图自编码器的相似度融合

  1.基于多视图的图卷积神经网络的基础结构
  为每个视图,设置矩阵A和对角矩阵D:
在这里插入图片描述在这里插入图片描述
  (1)使用两层图卷积神经网络获得每个视图的节点嵌入Z。在这里插入图片描述
  (2)两个节点之间的预测关系用sigmoid函数实现。在这里插入图片描述
在这里插入图片描述
  2.相似度矩阵的融合。
  为所有视图构造一个图(图中所有节点是固定的,节点表示一个特征,适用于所有视图),获得一个集成的相似度矩阵。而非将所有视图的节点嵌入连接。
  (1)将所有的相似度矩阵归一化,后聚合为综合相似度矩阵(线性加和求均值,不同矩阵不同权值)
在这里插入图片描述
  (2)使用单层图卷积网络编码图中节点为节点嵌入表示。
  (3)将节点嵌入表示解码至原始特征空间。(若节点无标签,则目标函数为自编码器的损失——“无监督多图融合和嵌入方法”。综合相似度矩阵也可用于其他任务,例如节点聚类)

  3.注意力机制下的视图选择。
  上述综合相似度矩阵采用线性的方法得到。实际应用中,大多为非线性,且每个视图的权重与数据和目标任务共同决定。
  (1)假设每个视图u有一个邻接矩阵A,且有一个边权g(在集成视图图中),则集成得到的邻接矩阵可以表示为:(操作符可视为一种乘法)
在这里插入图片描述
  (2)将每一个试图的邻接矩阵映射到一个没有归一化的空间,获得非归一化矩阵g’。
在这里插入图片描述
  (3)后将g’归一化为g,g作为视图u的邻接矩阵A的权值。

  实际应用中,图很大,所以不能使用N×N的全连接注意力矩阵。可以用对角注意力矩阵替代。
具体操作:将归一化后的g限制为一个向量。通过下述公式形成加权相似矩阵。
在这里插入图片描述
  这样,就可以将上上个公式中的W和b的参数从N×N减小到N。

  注意力相似度矩阵由上上个公式得到。此时W和b已经被替换。

  (4)对每个视图的g进行归一化,得到g中的每个位置i的注意力权重。
在这里插入图片描述
  该权重用于计算最终的相似度矩阵
在这里插入图片描述

二、基于部分标签的半监督学习

  保持注意力机制下的自编码器框架不变,使用网络h预测训练集的标签。h为:
在这里插入图片描述

三、使用测试集标签的转换学习

  在只有包含图结构信息的相似矩阵,没有节点特征的情况下。
  使用ont-hot表示节点特征或解码嵌入表示为ont-hot向量获取到的信息都很少。

  拓展上述提到的图自编码方法学习节点特征。
  (1)将训练集标签作为输入(每个节点的DDIdrug-drug interaction连接:不良药物之间的相互作用)。
  (2)使用相同的图自编码器重构它们。
在这里插入图片描述

  (3)图自编码器会输出节点间的预测连接。在这里插入图片描述

  (4)如果考虑图边之间的相似性。测试集节点的标签会影响测试集节点的解码过程。所以将测试集节点标签作为隐性变量,预测节点标签。在这里插入图片描述

四、实验

  化学结构相似的药物可能有不同的治疗靶点,导致不同的DDI机制。因此在药物相似度计算中使用多种药物特征是很重要的。

1.实验一

  通过整合多个相似度图,预测新药物之间是否存在相互作用。
  数据:(1) DDI标签,包括:645个药物和1318个DDI事件。共63473对不同药物的DDI相关报告。(2) 副作用标签:作为一类特征。包含996个药物和4192种副作用。(4) 药物结构特征:化学指纹图谱。药物结构描述符。1024位二进制向量。每个bit表示药物分子中是否存在某个子结构。

2.实验二

  通过集成药物的多视图,预测1301种新药物对之间的相互作用类型。
  使用222种药物和如下特征视图:(1) 药物indication:下载即可。广泛应用于临床的药物术语。(2) 药物化学蛋白相互作用体CPI:衡量药物与靶蛋白结合所需的能量。(3) 蛋白质和核酸靶标TTD:将每一种药物的多个蛋白质和核酸靶标信息相结合,生成207维度的特征。(4) 化学结构。

3.实验计算

  使用Tanimoto coefficient计算相似度。获得预测到的标签后。计算药物i和j之间相互作用的概率:
在这里插入图片描述

4.结论

  基于部分标签的半监督学习模型的ROC-AUC一般是最好的。由于节点特征嵌入。在数据集2上更明显,因为数据集2的特征视图种有节点嵌入。数据集1中的视图大多没有。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
节点相似性基于图卷积的链路预测是一种利用图神经网络进行链路预测的方法。在这种方法中,节点之间的相似性被用来指导图卷积神经网络学习节点表示,从而预测节点间的连接情况。 首先,我们需要计算节点之间的相似性。这可以通过计算节点间的相似性矩阵来实现。相似性矩阵可以基于节点的属性信息、节点之间的连接情况、节点的路径信息等进行计算。相似性矩阵可以反映节点之间的相似程度,从而指导后续的图卷积操作。 接着,我们可以利用相似性矩阵来指导图卷积神经网络的学习过程。在图卷积神经网络的每一层,节点的表示会根据其周围节点的表示进行更新。在节点相似性基于图卷积的链路预测中,相似性矩阵可以被用来调整节点表示的更新过程,使得相似的节点在表示空间中更加接近,从而提高链路预测的准确性。 最后,经过多层图卷积操作后,我们可以得到节点的最终表示。这些表示可以被用来进行链路预测。通过学习到的节点表示和相似性信息,我们可以预测节点之间的连接情况,从而实现链路预测的目的。 总之,节点相似性基于图卷积的链路预测方法充分利用了节点间的相似性信息,通过图卷积神经网络学习节点表示,从而实现链路预测的任务。这种方法在社交网络分析、推荐系统等领域具有重要的应用意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

炖鹅小铁锅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值