代数几何:消元(Elimination)、扩展(Extension)

参考文献:Ideals, Varieties, and Algorithms (4th ed.) [Cox, Little & O’Shea 2015-06-14]

前置文章:仿射簇 和 Groebner基

Elimination

消元理想(elimination ideal)

k k k,给定理想 I = < f 1 , ⋯   , f s > ⊆ k [ x 1 , ⋯   , x n ] I=<f_1,\cdots,f_s> \subseteq k[x_1,\cdots,x_n] I=<f1,,fs>⊆k[x1,,xn],它的 l l l次消元理想( l-th elimination ideal)定义为
I l = I ∩ k [ x l + 1 , ⋯   , x n ] I_l = I \cap k[x_{l+1},\cdots,x_n] Il=Ik[xl+1,,xn]

Elimination Theorem

I ⊆ k [ x 1 , ⋯   , x n ] I \subseteq k[x_1,\cdots,x_n] Ik[x1,,xn]是理想,令 G G G是它的一组Groebner基,且字典序为 x 1 > x 2 > ⋯ > x n x_1>x_2>\cdots>x_n x1>x2>>xn,那么任意的 0 ≤ l ≤ n 0 \le l \le n 0ln
G l = G ∩ k [ x l + 1 , ⋯   , x n ] G_l = G \cap k[x_{l+1},\cdots,x_n] Gl=Gk[xl+1,,xn]
是消元理想 I l I_l Il的一组Groebner基。

Extension

部分解(partial solution)

对于理想 I I I,给定消元理想 I l I_l Il,如果 ( a l + 1 , ⋯   , a n ) ∈ V ( I l ) (a_{l+1},\cdots,a_n) \in V(I_l) (al+1,,an)V(Il),我们称它是原始方程系统的部分解。

为了从部分解获得完全解(complete solution),假设消元理想 I l − 1 = < g 1 , ⋯   , g r > ⊆ k [ x l , x l + 1 , ⋯   , x n ] I_{l-1} = <g_1,\cdots,g_r> \subseteq k[x_l,x_{l+1},\cdots,x_n] Il1=<g1,,gr>⊆k[xl,xl+1,,xn],那么我们求解方程
g 1 ( x l , a l + 1 , ⋯   , a n ) = ⋯ = g r ( x l , a l + 1 , ⋯   , a n ) = 0 g_1(x_l,a_{l+1},\cdots,a_n) = \cdots = g_r(x_l,a_{l+1},\cdots,a_n) = 0 g1(xl,al+1,,an)==gr(xl,al+1,,an)=0
得到所有可能的分量 x l = a l x_l = a_l xl=al,然后继续计算其他分量,直到扩展到完全解。

Extension Theorem

I = < f 1 , ⋯   , f s > ⊆ C [ x 1 , ⋯   , x n ] I= <f_1,\cdots,f_s> \subseteq C[x_1,\cdots,x_n] I=<f1,,fs>⊆C[x1,,xn]是复变函数环的理想,令 I 1 I_1 I1是它的 1 1 1次消元理想。对于任意的 1 ≤ i ≤ s 1 \le i \le s 1is,我们将 f i f_i fi写作如下形式
f i = c i ( x 2 , ⋯   , x n ) x 1 N i + f i ′ f_i = c_i(x_2,\cdots,x_n)x_1^{N_i} + f_i' fi=ci(x2,,xn)x1Ni+fi
其中 N i = deg ⁡ x 1 f i ≥ 0 N_i = \deg_{x_1} f_i \ge 0 Ni=degx1fi0 f i ′ f_i' fi的关于 x 1 x_1 x1的度数小于 N i N_i Ni,首项系数 c i ∈ C [ x 2 , ⋯   , x n ] c_i \in C[x_2,\cdots,x_n] ciC[x2,,xn]非零。假设 ( a 2 , ⋯   , a n ) ∈ V ( I 1 ) (a_2,\cdots,a_n) \in V(I_1) (a2,,an)V(I1)是部分解,若 ( a 2 , ⋯   , a n ) ∉ V ( c 1 , ⋯   , c s ) (a_2,\cdots,a_n) \notin V(c_1,\cdots,c_s) (a2,,an)/V(c1,,cs),那么存在 a 1 ∈ C a_1 \in C a1C,使得 ( a 1 , a 2 , ⋯   , a n ) ∈ V ( I ) (a_1,a_2,\cdots,a_n) \in V(I) (a1,a2,,an)V(I)

在上述定理中, ( a 2 , ⋯   , a n ) ∉ V ( c 1 , ⋯   , c s ) (a_2,\cdots,a_n) \notin V(c_1,\cdots,c_s) (a2,,an)/V(c1,,cs)是说理想 I I I的基的前导系数在部分解上并不同时消失(vanish simultaneously)。扩展定理仅当 ( a 2 , ⋯   , a n ) ∈ V ( c 1 , ⋯   , c s ) (a_2,\cdots,a_n) \in V(c_1,\cdots,c_s) (a2,,an)V(c1,,cs)时会失效,无法从部分解扩展到完全解。选取不同的基,簇 V ( c 1 , ⋯   , c s ) V(c_1,\cdots,c_s) V(c1,,cs)会改变,我们希望这个簇越小越好。

例子

理想 I = < x 2 + y 2 + z 2 − 1 , x y z − 1 > I=<x^2+y^2+z^2-1,xyz-1> I=<x2+y2+z21,xyz1>,按照字典序,计算Groebner基
g 1 = y 4 z 2 + y 2 z 4 − y 2 z 2 + 1 g 2 = x + y 3 z + y z 3 − y z \begin{aligned} g_1 &= y^4z^2 + y^2z^4 - y^2z^2 +1\\ g_2 &= x+y^3z+yz^3-yz\\ \end{aligned} g1g2=y4z2+y2z4y2z2+1=x+y3z+yz3yz
明显有如下消元理想
I 1 = I ∩ C [ y , z ] = < g 1 > I 2 = I ∩ C [ z ] = { 0 } \begin{aligned} I_1 =& I \cap C[y,z] = <g_1>\\ I_2 =& I \cap C[z] = \{0\}\\ \end{aligned} I1=I2=IC[y,z]=<g1>IC[z]={0}
那么由于 I 2 = { 0 } I_2 = \{0\} I2={0},根据零点定理,于是 V ( I 2 ) = C V(I_2) = C V(I2)=C,即任意的 c ∈ C c \in C cC都是部分解。

然后由于 I 2 I_2 I2 I 1 I_1 I1 1 1 1次消元理想, I 1 = < g 1 > I_1=<g_1> I1=<g1>的首项系数的理想为 < z 2 > <z^2> <z2>,根据扩展定理,除了 c = 0 c=0 c=0其他的部分解都可以继续扩展,得到部分解 ( b , c ) (b,c) (b,c)

然后由于 I 1 I_1 I1 I I I 1 1 1次消元理想, I I I的首项系数的理想为 < 1 , y z > <1,yz> <1,yz>,根据扩展定理,由于 V ( 1 ) = ∅ V(1) = \empty V(1)=,因此任意的 ( b , c ) (b,c) (b,c)总是可以扩展到完全解 ( a , b , c ) (a,b,c) (a,b,c)

于是,所有的部分解 c ≠ 0 c \neq 0 c=0,都可以扩展到完全解 ( a , b , c ) ∈ C 3 (a,b,c) \in C^3 (a,b,c)C3

推论

在上述的例子中,我们看到了常数的前导系数。

I = < f 1 , ⋯   , f s > ⊆ C [ x 1 , ⋯   , x n ] I= <f_1,\cdots,f_s> \subseteq C[x_1,\cdots,x_n] I=<f1,,fs>⊆C[x1,,xn]是复变函数环的理想,令 I 1 I_1 I1是它的 1 1 1次消元理想。对于某个 1 ≤ i ≤ s 1 \le i \le s 1is f i f_i fi有如下形式
f i = c i x 1 N i + f i ′ f_i = c_ix_1^{N_i} + f_i' fi=cix1Ni+fi
其中 N i > 0 N_i > 0 Ni>0是正整数, f i ′ f_i' fi的关于 x 1 x_1 x1的度数小于 N i N_i Ni,首项系数 c i ∈ C c_i \in C ciC非零。假设 ( a 2 , ⋯   , a n ) ∈ V ( I 1 ) (a_2,\cdots,a_n) \in V(I_1) (a2,,an)V(I1)是部分解,那么总有 ( a 2 , ⋯   , a n ) ∉ V ( c i ) (a_2,\cdots,a_n) \notin V(c_i) (a2,,an)/V(ci),于是总存在 a 1 ∈ C a_1 \in C a1C,使得 ( a 1 , a 2 , ⋯   , a n ) ∈ V ( I ) (a_1,a_2,\cdots,a_n) \in V(I) (a1,a2,,an)V(I)

证明 Extension Theorem

过程很复杂,详见书籍Ideals, Varieties, and AlgorithmsChapter 3.5 3.6

  1. 利用Groebner基来证明
  2. 利用Resultants来证明

Geometry of Elimination

Projection map

给定理想 I = < f 1 , ⋯   , f s > I=<f_1,\cdots,f_s> I=<f1,,fs>,对应的簇 V = V ( I ) ⊆ C n V = V(I) \subseteq C^n V=V(I)Cn,考虑投影映射
π l : C n → C n − l ( a 1 , ⋯   , a n ) ↦ ( a l + 1 , ⋯   , a n ) \begin{aligned} \pi_l: && C^n &&\to&& C^{n-l}\\ && (a_1,\cdots,a_n) &&\mapsto&& (a_{l+1},\cdots,a_n) \end{aligned} πl:Cn(a1,,an)Cnl(al+1,,an)
I l I_l Il I I I的消元理想,那么
π l ( V ) ⊆ V ( I l ) ⊆ C n − l \pi_l(V) \subseteq V(I_l) \subseteq C^{n-l} πl(V)V(Il)Cnl
其中
π l ( V ) = { ( a l + 1 , ⋯   , a n ) ∈ V ( I l ) : ∃ a 1 , ⋯   , a l ∈ C ,    ( a 1 , ⋯   , a n ) ∈ V } \pi_l(V) = \{ (a_{l+1},\cdots,a_n) \in V(I_l): \exists a_1,\cdots,a_l \in C,\,\, (a_1,\cdots,a_n) \in V \} πl(V)={(al+1,,an)V(Il):a1,,alC,(a1,,an)V}

Geometric Extension Theorem

给定理想 I = < f 1 , ⋯   , f s > I=<f_1,\cdots,f_s> I=<f1,,fs>,对应的簇 V = V ( I ) ⊆ C n V = V(I) \subseteq C^n V=V(I)Cn​。对于任意的 1 ≤ i ≤ s 1 \le i \le s 1is,我们将 f i f_i fi写作如下形式
f i = c i ( x 2 , ⋯   , x n ) x 1 N i + f i ′ f_i = c_i(x_2,\cdots,x_n)x_1^{N_i} + f_i' fi=ci(x2,,xn)x1Ni+fi
其中 N i = deg ⁡ x 1 f i ≥ 0 N_i = \deg_{x_1} f_i \ge 0 Ni=degx1fi0 f i ′ f_i' fi的关于 x 1 x_1 x1的度数小于 N i N_i Ni,首项系数 c i ∈ C [ x 2 , ⋯   , x n ] c_i \in C[x_2,\cdots,x_n] ciC[x2,,xn]非零。令 I 1 I_1 I1 I I I的消元理想,那么有如下的等式
V ( I 1 ) = π 1 ( V ) ∪ ( V ( c 1 , ⋯   , c s ) ∩ V ( I 1 ) ) V(I_1) = \pi_1(V) \cup (V(c_1,\cdots,c_s) \cap V(I_1)) V(I1)=π1(V)(V(c1,,cs)V(I1))

Closure Theorem

给定理想 I = < f 1 , ⋯   , f s > I=<f_1,\cdots,f_s> I=<f1,,fs>,对应的簇 V = V ( I ) ⊆ C n V = V(I) \subseteq C^n V=V(I)Cn,以及消元理想 I l I_l Il,那么有

  1. V ( I l ) V(I_l) V(Il)是包含 π l ( V ) ⊆ C n − l \pi_l(V) \subseteq C^{n-l} πl(V)Cnl的最小簇(smallest variety)
  2. V ≠ ∅ V \neq \empty V=时,存在一个代数簇 W ⊊ V ( I l ) W \subsetneq V(I_l) WV(Il),使得 V ( I l ) \ W ⊆ π l ( V ) V(I_l) \backslash W \subseteq \pi_l(V) V(Il)\Wπl(V)

上述的“最小”意味着:如果 π l ( V ) ⊆ Z ⊆ C n − l \pi_l(V) \subseteq Z \subseteq C^{n-l} πl(V)ZCnl是任意仿射簇,那么就有 V ( I l ) ⊆ Z V(I_l) \subseteq Z V(Il)Z

推论

给定理想 I = < f 1 , ⋯   , f s > I=<f_1,\cdots,f_s> I=<f1,,fs>,对应的簇 V = V ( I ) ⊆ C n V = V(I) \subseteq C^n V=V(I)Cn​。对于某个 1 ≤ i ≤ s 1 \le i \le s 1is,如果 f i f_i fi有形式
f i = c i x 1 N i + f i ′ f_i = c_ix_1^{N_i} + f_i' fi=cix1Ni+fi
其中 N i > 0 N_i > 0 Ni>0是正整数, f i ′ f_i' fi的关于 x 1 x_1 x1的度数小于 N i N_i Ni,首项系数 c i ∈ C c_i \in C ciC非零。令 I 1 I_1 I1 I I I的消元理想,那么有如下的等式
V ( I 1 ) = π 1 ( V ) V(I_1) = \pi_1(V) V(I1)=π1(V)

Implicitization

Implicitization Problem

对于参数方程(parametric equations),如何求出包含参数化(the parametrization)的最小簇 V V V的方程描述?

进一步的,

  1. 判断参数化是否填满了簇 V V V
  2. 如果存在未命中点(missing points),怎么找出它们?

1. case of a polynomial parametrization

给定参数方程组
x 1 = f 1 ( t 1 , ⋯   , t m ) ⋮ x n = f n ( t 1 , ⋯   , t m ) \begin{aligned} x_1 = f_1(t_1,\cdots,t_m)\\ \vdots\\ x_n = f_n(t_1,\cdots,t_m)\\ \end{aligned} x1=f1(t1,,tm)xn=fn(t1,,tm)
其中 f i ∈ k [ t 1 , ⋯   , t m ] f_i \in k[t_1,\cdots,t_m] fik[t1,,tm],上述的参数方程组可以视作函数 F : k m → k n F:k^m \to k^n F:kmkn
F ( t 1 , ⋯   , t m ) : = ( f 1 ( t 1 , ⋯   , t m ) , ⋯   , f n ( t 1 , ⋯   , t m ) ) \begin{aligned} F(t_1,\cdots,t_m) := (f_1(t_1,\cdots,t_m), \cdots, f_n(t_1,\cdots,t_m)) \end{aligned} F(t1,,tm):=(f1(t1,,tm),,fn(t1,,tm))
注意, F ( k m ) ⊆ k n F(k^m) \subseteq k^n F(km)kn可能不是仿射簇,Implicitization Problem要我们寻找包含集合 F ( k m ) F(k^m) F(km)的最小的仿射簇 V V V

定义簇
V = V ( x 1 − f 1 , ⋯   , x n − f n ) ⊆ k m + n V = V(x_1-f_1,\cdots,x_n-f_n) \subseteq k^{m+n} V=V(x1f1,,xnfn)km+n
它内部的点可以写作如下形式
( t 1 , ⋯   , t m , f 1 ( t 1 , ⋯   , t m ) , ⋯   , f n ( t 1 , ⋯   , t m ) ) ⊆ k m + n (t_1,\cdots,t_m,f_1(t_1,\cdots,t_m),\cdots,f_n(t_1,\cdots,t_m)) \subseteq k^{m+n} (t1,,tm,f1(t1,,tm),,fn(t1,,tm))km+n
上述的簇 V V V可以看做函数 F F F的图(graph)

定义注入映射 i : k m → k m + n i:k^m \to k^{m+n} i:kmkm+n
i ( t 1 , ⋯   , t m ) = ( t 1 , ⋯   , t m , f 1 ( t 1 , ⋯   , t m ) , ⋯   , f n ( t 1 , ⋯   , t m ) ) i(t_1,\cdots,t_m) = (t_1,\cdots,t_m,f_1(t_1,\cdots,t_m),\cdots,f_n(t_1,\cdots,t_m)) i(t1,,tm)=(t1,,tm,f1(t1,,tm),,fn(t1,,tm))
定义射影映射 π m : k m + n → k n \pi_m:k^{m+n} \to k^{n} πm:km+nkn
π m ( t 1 , ⋯   , t m , x 1 , ⋯   , x n ) = ( x 1 , ⋯   , x n ) \pi_m(t_1,\cdots,t_m,x_1,\cdots,x_n) = (x_1,\cdots,x_n) πm(t1,,tm,x1,,xn)=(x1,,xn)
很明显, F = π m ∘ i F = \pi_m \circ i F=πmi是上述两个映射的组合,且 i ( k m ) = V i(k^m)=V i(km)=V,于是
F ( k m ) = π m ( i ( k m ) ) = π m ( V ) F(k^m) = \pi_m(i(k^m)) = \pi_m(V) F(km)=πm(i(km))=πm(V)

Polynomial Implicitization

k k k是无限域,函数 F : k m → k n F:k^m \to k^n F:kmkn按照上述的定义,令理想 I = < x 1 − f 1 , ⋯   , x n − f n > ⊆ k [ t 1 , ⋯   , t m , x 1 , ⋯   , x n ] I=<x_1-f_1,\cdots,x_n-f_n> \subseteq k[t_1,\cdots,t_m,x_1,\cdots,x_n] I=<x1f1,,xnfn>⊆k[t1,,tm,x1,,xn],令 I m = I ∩ k [ x 1 , ⋯   , x n ] I_m = I \cap k[x_1,\cdots,x_n] Im=Ik[x1,,xn]是它的 m m m次消元理想,那么 V ( I m ) V(I_m) V(Im)就是 k n k^n kn内包含 F ( k m ) F(k^m) F(km)的最小簇。

implicitization algorithm for polynomial parametrizations

  1. 给定参数方程组 x i = f i ( t 1 , ⋯   , t m ) x_i = f_i(t_1,\cdots,t_m) xi=fi(t1,,tm),其中 f i ∈ k [ t 1 , ⋯   , t m ] f_i \in k[t_1,\cdots,t_m] fik[t1,,tm],构造理想 I = < x 1 − f 1 , ⋯   , x n − f n > I=<x_1-f_1,\cdots,x_n-f_n> I=<x1f1,,xnfn>
  2. 计算理想 I I I的Groebner基 G G G,其中的字典序为 t 1 > ⋯ > t m > x 1 > ⋯ > x n t_1>\cdots>t_m>x_1>\cdots>x_n t1>>tm>x1>>xn
  3. 根据 Elimination 定理,集合 G ′ = G ∩ k [ x 1 , ⋯   , x n ] G'=G \cap k[x_1,\cdots,x_n] G=Gk[x1,,xn]就是 I m I_m Im的一组Groebner基
  4. 根据 Polynomial Implicitization 定理,簇 V ( G ′ ) V(G') V(G)就是 k n k^n kn上包含 the parametrization 的最小簇。

2. case of a rational parametrization

给定参数方程组
x 1 = f 1 ( t 1 , ⋯   , t m ) g 1 ( t 1 , ⋯   , t m ) ⋮ x n = f n ( t 1 , ⋯   , t m ) g n ( t 1 , ⋯   , t m ) \begin{aligned} x_1 = \frac{f_1(t_1,\cdots,t_m)}{g_1(t_1,\cdots,t_m)}\\ \vdots\\ x_n = \frac{f_n(t_1,\cdots,t_m)}{g_n(t_1,\cdots,t_m)}\\ \end{aligned} x1=g1(t1,,tm)f1(t1,,tm)xn=gn(t1,,tm)fn(t1,,tm)
其中 f i , g i ∈ k [ t 1 , ⋯   , t m ] f_i,g_i \in k[t_1,\cdots,t_m] fi,gik[t1,,tm],上述的参数方程组可以视作函数 F : k m \ W → k n F:k^m\backslash W \to k^n F:km\Wkn
F ( t 1 , ⋯   , t m ) : = ( f 1 ( t 1 , ⋯   , t m ) g 1 ( t 1 , ⋯   , t m ) , ⋯   , f n ( t 1 , ⋯   , t m ) g n ( t 1 , ⋯   , t m ) ) \begin{aligned} F(t_1,\cdots,t_m) := (\frac{f_1(t_1,\cdots,t_m)}{g_1(t_1,\cdots,t_m)}, \cdots, \frac{f_n(t_1,\cdots,t_m)}{g_n(t_1,\cdots,t_m)}) \end{aligned} F(t1,,tm):=(g1(t1,,tm)f1(t1,,tm),,gn(t1,,tm)fn(t1,,tm))
其中 W = V ( g ) ⊆ k m W = V(g) \subseteq k^m W=V(g)km g : = g 1 g 2 ⋯ g n g:=g_1g_2 \cdots g_n g:=g1g2gn,在簇 W W W上函数 F F F无定义。

为了控制 rational polynomial 的分母,我们添加一个新变量 y y y,考虑多项式环 k [ y , t 1 , ⋯   , t m , x 1 , ⋯   , x n ] k[y,t_1,\cdots,t_m,x_1,\cdots,x_n] k[y,t1,,tm,x1,,xn]以及仿射空间 k 1 + m + n k^{1+m+n} k1+m+n,定义如下的理想:
J = < g 1 x 1 − f 1 , ⋯   , g n x n − f n , 1 − g y > J = <g_1x_1-f_1,\cdots,g_nx_n-f_n,1-gy> J=<g1x1f1,,gnxnfn,1gy>
定义注入映射 j : k m \ W → k 1 + m + n j:k^m\backslash W \to k^{1+m+n} j:km\Wk1+m+n
j ( t 1 , ⋯   , t m ) = ( 1 g ( t 1 , ⋯   , t m ) , t 1 , ⋯   , t m , f 1 ( t 1 , ⋯   , t m ) g 1 ( t 1 , ⋯   , t m ) , ⋯   , f n ( t 1 , ⋯   , t m ) g n ( t 1 , ⋯   , t m ) ) j(t_1,\cdots,t_m) = (\frac{1}{g(t_1,\cdots,t_m)},t_1,\cdots,t_m,\frac{f_1(t_1,\cdots,t_m)}{g_1(t_1,\cdots,t_m)}, \cdots, \frac{f_n(t_1,\cdots,t_m)}{g_n(t_1,\cdots,t_m)}) j(t1,,tm)=(g(t1,,tm)1,t1,,tm,g1(t1,,tm)f1(t1,,tm),,gn(t1,,tm)fn(t1,,tm))
定义射影映射 π 1 + m : k 1 + m + n → k n \pi_{1+m}:k^{1+m+n} \to k^{n} π1+m:k1+m+nkn
π 1 + m ( y , t 1 , ⋯   , t m , x 1 , ⋯   , x n ) = ( x 1 , ⋯   , x n ) \pi_{1+m}(y,t_1,\cdots,t_m,x_1,\cdots,x_n) = (x_1,\cdots,x_n) π1+m(y,t1,,tm,x1,,xn)=(x1,,xn)
很明显, F = π 1 + m ∘ j F = \pi_{1+m} \circ j F=π1+mj是上述两个映射的组合

可以证明 j ( k m \ W ) = V ( J ) j(k^m\backslash W)=V(J) j(km\W)=V(J):根据 j j j J J J的定义,明显 j ( k m \ W ) ⊆ V ( J ) j(k^m\backslash W) \subseteq V(J) j(km\W)V(J);对于任意的点 ( y , t 1 , ⋯   , t m , x 1 , ⋯   , x n ) ∈ V ( J ) (y,t_1,\cdots,t_m,x_1,\cdots,x_n) \in V(J) (y,t1,,tm,x1,,xn)V(J) g ( t 1 , ⋯   , t m ) y = 1 g(t_1,\cdots,t_m)y=1 g(t1,,tm)y=1意味着任意的 g i g_i gi在点 ( t 1 , ⋯   , t m ) (t_1,\cdots,t_m) (t1,,tm)上都非零,从而可以求解出 x i = f i ( t 1 , ⋯   , t m ) g i ( t 1 , ⋯   , t m ) x_i = \dfrac{f_i(t_1,\cdots,t_m)}{g_i(t_1,\cdots,t_m)} xi=gi(t1,,tm)fi(t1,,tm),于是这个点属于 j ( k m \ W ) j(k^m\backslash W) j(km\W),即 j ( k m \ W ) ⊇ V ( J ) j(k^m\backslash W) \supseteq V(J) j(km\W)V(J)

于是
F ( k m \ W ) = π 1 + m ( j ( k m \ W ) ) = π 1 + m ( V ( J ) ) F(k^m\backslash W) = \pi_{1+m}(j(k^m\backslash W)) = \pi_{1+m}(V(J)) F(km\W)=π1+m(j(km\W))=π1+m(V(J))

Rational Implicitization

k k k是无限域,函数 F : k m \ W → k n F:k^m\backslash W \to k^n F:km\Wkn按照上述的定义,令理想 J = < g 1 x 1 − f 1 , ⋯   , g n x n − f n , 1 − g y > ⊆ k [ y , t 1 , ⋯   , t m , x 1 , ⋯   , x n ] J=<g_1x_1-f_1,\cdots,g_nx_n-f_n,1-gy> \subseteq k[y,t_1,\cdots,t_m,x_1,\cdots,x_n] J=<g1x1f1,,gnxnfn,1gy>⊆k[y,t1,,tm,x1,,xn],其中 g = g 1 g 2 ⋯ g n g=g_1g_2 \cdots g_n g=g1g2gn W = V ( g ) W = V(g) W=V(g),令 J 1 + m = J ∩ k [ x 1 , ⋯   , x n ] J_{1+m} = J \cap k[x_1,\cdots,x_n] J1+m=Jk[x1,,xn]是它的 1 + m 1+m 1+m次消元理想,那么 V ( J 1 + m ) V(J_{1+m}) V(J1+m)就是 k n k^n kn内包含 F ( k m \ W ) F(k^m\backslash W) F(km\W)的最小簇。

implicitization algorithm for rational parametrizations

  1. 给定参数方程组 x i = f i ( t 1 , ⋯   , t m ) g i ( t 1 , ⋯   , t m ) x_i = \dfrac{f_i(t_1,\cdots,t_m)}{g_i(t_1,\cdots,t_m)} xi=gi(t1,,tm)fi(t1,,tm),其中 f i , g i ∈ k [ t 1 , ⋯   , t m ] f_i,g_i \in k[t_1,\cdots,t_m] fi,gik[t1,,tm],构造理想 J = < g 1 x 1 − f 1 , ⋯   , g n x n − f n , 1 − g y > J=<g_1x_1-f_1,\cdots,g_nx_n-f_n,1-gy> J=<g1x1f1,,gnxnfn,1gy>
  2. 计算理想 J J J的Groebner基 G G G,其中的字典序为 y > t 1 > ⋯ > t m > x 1 > ⋯ > x n y>t_1>\cdots>t_m>x_1>\cdots>x_n y>t1>>tm>x1>>xn
  3. 根据 Elimination 定理,集合 G ′ = G ∩ k [ x 1 , ⋯   , x n ] G'=G \cap k[x_1,\cdots,x_n] G=Gk[x1,,xn]就是 J 1 + m J_{1+m} J1+m的一组Groebner基
  4. 根据 Rational Implicitization 定理,簇 V ( G ′ ) V(G') V(G)就是 k n k^n kn上包含 the parametrization 的最小簇。

上述算法直到1990年才被KALKBRENER给出。

例子

给定参数方程
x = u 2 v y = v 2 u z = u \begin{aligned} x &= \frac{u^2}{v}\\ y &= \frac{v^2}{u}\\ z &= u\\ \end{aligned} xyz=vu2=uv2=u
根据算法,我们先定义理想,其中 w w w是新变量:
J = < v x − u 2 , u y − v 2 , z − u , 1 − u v w > J = <vx-u^2,uy-v^2,z-u,1-uvw> J=<vxu2,uyv2,zu,1uvw>
w > u > v > x > y > z w>u>v>x>y>z w>u>v>x>y>z,容易计算Groebner基,得到
J 3 = J ∩ k [ x , y , z ] = < x 2 y − z 3 > J_3 = J \cap k[x,y,z] = <x^2y-z^3> J3=Jk[x,y,z]=<x2yz3>
因此,簇 V ( J 3 ) V(J_3) V(J3)就是包含参数化的最小簇。容易检验 ( x , y , z ) (x,y,z) (x,y,z)总是落在曲面 x 2 y = z 3 x^2y=z^3 x2y=z3上。进一步的,可以验证它们填满了这个簇 V ( x 2 y − z 3 ) V(x^2y-z^3) V(x2yz3)(是否填满了簇,这需要针对不同的参数方程具体分析)

Singular Points and Envelopes

假设曲线 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0在平面 k 2 k^2 k2内,其中 f ∈ k [ x , y ] f \in k[x,y] fk[x,y],簇 V ( f ) ∈ k 2 V(f) \in k^2 V(f)k2,点 ( a , b ) ∈ V ( f ) (a,b) \in V(f) (a,b)V(f)。直线 L L L经过点 ( a , b ) (a,b) (a,b),写作关于 t t t的参数方程:
x = a + c t y = b + d t x=a+ct\\ y=b+dt x=a+cty=b+dt
我们说** L L L meets V ( f ) V(f) V(f) with multiplicity m m m at ( a , b ) (a,b) (a,b)**,如果 t = 0 t=0 t=0是多项式 g ( t ) = f ( a + c t , b + d t ) g(t) = f(a+ct,b+dt) g(t)=f(a+ct,b+dt) m m m重根,即 g = t m h g=t^mh g=tmh h ( 0 ) ≠ 0 h(0) \neq 0 h(0)=0

定义函数 f f f梯度向量(gradient vector)
∇ f = ( ∂ f ∂ x , ∂ f ∂ y ) \nabla f = \left( \dfrac{\partial f}{\partial x}, \dfrac{\partial f}{\partial y} \right) f=(xf,yf)

  1. 如果 ∇ f ( a , b ) ≠ ( 0 , 0 ) \nabla f(a,b) \neq (0,0) f(a,b)=(0,0),那么存在唯一的经过 ( a , b ) (a,b) (a,b)的直线,与 V ( f ) V(f) V(f)相遇的重数大于等于 2 2 2,这条直线叫做切线(tangent line),易知 ∇ f ( a , b ) \nabla f(a,b) f(a,b)与这条切线垂直(perpendicular)
  2. 如果 ∇ f ( a , b ) = ( 0 , 0 ) \nabla f(a,b) = (0,0) f(a,b)=(0,0),那么任意的经过 ( a , b ) (a,b) (a,b)的直线,与 V ( f ) V(f) V(f)相遇的重数都大于等于 2 2 2

奇异点(Singular Points):令 f ∈ k [ x , y ] f \in k[x,y] fk[x,y],点 ( a , b ) ∈ V ( f ) (a,b) \in V(f) (a,b)V(f),如果 ∇ f ( a , b ) = ( 0 , 0 ) \nabla f(a,b) = (0,0) f(a,b)=(0,0),那么我们叫它为奇异点;否则,叫做非奇异点(nonsingular point)。

易知,奇异点 ( a , b ) ∈ V ( f ) (a,b) \in V(f) (a,b)V(f)满足方程组
f = ∂ f ∂ x = ∂ f ∂ y = 0 f = \dfrac{\partial f}{\partial x} = \dfrac{\partial f}{\partial y} = 0 f=xf=yf=0
给定多项式 F ∈ R [ x , y , t ] F \in R[x,y,t] FR[x,y,t],其中 t ∈ R t \in R tR是固定实数。那么由 F ( x , y , t ) = 0 F(x,y,t)=0 F(x,y,t)=0所定义的簇,记做 V ( F t ) ⊆ R 2 V(F_t) \subseteq R^2 V(Ft)R2。让 t t t沿着 R R R变化,则 V ( F t ) V(F_t) V(Ft)跟随变化,它们组成了曲线族(family of curves)

包络线(Envelopes):粗略地说,包络线是与一族曲线都相切的曲线。给定 R 2 R^2 R2上的曲线族 V ( F t ) V(F_t) V(Ft),包络线是一个点集,每个点 ( x , y ) (x,y) (x,y)都对于某些 t ∈ R t \in R tR,满足以下方程
F ( x , y , t ) = ∂ F ∂ t ( x , y , t ) = 0 F(x,y,t) = \dfrac{\partial F}{\partial t}(x,y,t) = 0 F(x,y,t)=tF(x,y,t)=0
其中 ( x , y ) (x,y) (x,y)记录包络线的位置, t t t记录这个位置所相切的曲线。

为了计算曲线族 V ( F t ) V(F_t) V(Ft)的包络线,

  1. 根据函数 F F F,构造理想 I = < F ( x , y , t ) , ∂ F ∂ t ( x , y , t ) > I = <F(x,y,t), \dfrac{\partial F}{\partial t}(x,y,t)> I=<F(x,y,t),tF(x,y,t)>
  2. 字典序 t > x > y t>x>y t>x>y,计算它的Groebner基 G G G
  3. 那么 G ′ = G ∩ k [ x , y ] G' = G \cap k[x,y] G=Gk[x,y]是消元理想 I 1 I_1 I1的Groebner基
  4. V ( G ′ ) V(G') V(G)包含包络线,如果部分解 ( x , y ) ∈ V ( I 1 ) (x,y) \in V(I_1) (x,y)V(I1)能够扩展到 I I I的某些完全解 ( x , y , t ) ∈ R 3 (x,y,t) \in R^3 (x,y,t)R3,那么点 ( x , y ) (x,y) (x,y)属于包络线

注意,扩展定理是关于 C [ x 1 , ⋯   , x n ] C[x_1,\cdots,x_n] C[x1,,xn]的,因此即使一个点 ( x , y ) ∈ R 2 (x,y) \in R^2 (x,y)R2能扩展出某些 t ∈ C t \in C tC,也可能不存在 R 3 R^3 R3内的完全解。

另外,簇 V ( I 1 ) V(I_1) V(I1)的奇异点上,可能存在曲线族内的多条曲线与它相切。

例子

曲线族 ( x − t ) 2 + ( y − t 2 ) 2 = 4 (x-t)^2 + (y-t^2)^2 = 4 (xt)2+(yt2)2=4
在这里插入图片描述
下图绘制了包络线以及中心线 ( t , t 2 ) (t,t^2) (t,t2)
在这里插入图片描述

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值