cuda和tensorflow-gpu版本适配(2021.08更新,cuda11.1适配方案)

https://tensorflow.google.cn/install/source_windows
在上面这个网址会更新
在这里插入图片描述
上表没有涵盖cuda11.1
cuda11.1 适配 tensorflow-gpu 2.5.0 keras 2.4.3

自编译tensorflow1.python3.5,tensorflow1.12; 2.支持cuda10.0,cudnn7.3.1,TensorRT-5.0.2.6-cuda10.0-cudnn7.3; 3.支持mkl,无MPI; 软硬件硬件环境:Ubuntu16.04,GeForce GTX 1080 配置信息: hp@dla:~/work/ts_compile/tensorflow$ ./configure WARNING: --batch mode is deprecated. Please instead explicitly shut down your Bazel server using the command "bazel shutdown". You have bazel 0.19.1 installed. Please specify the location of python. [Default is /usr/bin/python]: /usr/bin/python3 Found possible Python library paths: /usr/local/lib/python3.5/dist-packages /usr/lib/python3/dist-packages Please input the desired Python library path to use. Default is [/usr/local/lib/python3.5/dist-packages] Do you wish to build TensorFlow with XLA JIT support? [Y/n]: XLA JIT support will be enabled for TensorFlow. Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: No OpenCL SYCL support will be enabled for TensorFlow. Do you wish to build TensorFlow with ROCm support? [y/N]: No ROCm support will be enabled for TensorFlow. Do you wish to build TensorFlow with CUDA support? [y/N]: y CUDA support will be enabled for TensorFlow. Please specify the CUDA SDK version you want to use. [Leave empty to default to CUDA 10.0]: Please specify the location where CUDA 10.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: /usr/local/cuda-10.0 Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 7]: 7.3.1 Please specify the location where cuDNN 7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda-10.0]: Do you wish to build TensorFlow with TensorRT support? [y/N]: y TensorRT support will be enabled for TensorFlow. Please specify the location where TensorRT is installed. [Default is /usr/lib/x86_64-linux-gnu]:/home/hp/bin/TensorRT-5.0.2.6-cuda10.0-cudnn7.3/targets/x86_64-linux-gnu Please specify the locally installed NCCL version you want to use. [Default is to use https://github.com/nvidia/nccl]: Please specify a list of comma-separated Cuda compute capabilities you want to build with. You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus. Please note that each additional compute capability significantly increases your build time and binary size. [Default is: 6.1,6.1,6.1]: Do you want to use clang as CUDA compiler? [y/N]: nvcc will be used as CUDA compiler. Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: Do you wish to build TensorFlow with MPI support? [y/N]: No MPI support will be enabled for TensorFlow. Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native -Wno-sign-compare]: Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: Not configuring the WORKSPACE for Android builds. Preconfigured Bazel build configs. You can use any of the below by adding "--config=" to your build command. See .bazelrc for more details. --config=mkl # Build with MKL support. --config=monolithic # Config for mostly static monolithic build. --config=gdr # Build with GDR support. --config=verbs # Build with libverbs support. --config=ngraph # Build with Intel nGraph support. --config=dynamic_kernels # (Experimental) Build kernels into separate shared objects. Preconfigured Bazel build configs to DISABLE default on features: --config=noaws # Disable AWS S3 filesystem support. --config=nogcp # Disable GCP support. --config=nohdfs # Disable HDFS support. --config=noignite # Disable Apacha Ignite support. --config=nokafka # Disable Apache Kafka support. --config=nonccl # Disable NVIDIA NCCL support. Configuration finished 编译: hp@dla:~/work/ts_compile/tensorflow$ bazel build --config=opt --config=mkl --verbose_failures //tensorflow/tools/pip_package:build_pip_package 卸载已有tensorflow: hp@dla:~/temp$ sudo pip3 uninstall tensorflow 安装自己编译的成果: hp@dla:~/temp$ sudo pip3 install tensorflow-1.12.0-cp35-cp35m-linux_x86_64.whl
### 关于 TensorFlow-gpu 1.14.0 的安装与使用 #### 版本兼容性说明 当通过 `conda` 安装 TensorFlow-gpu 1.14.0 时,环境会自动配置所需的依赖项,包括 CUDA cuDNN 的适当版本。尽管本地已存在不同版本CUDA(如 11.1),但 Conda 创建的新环境中将仅使用与 TensorFlow 兼容的指定版本——即 CUDA 10.0.130 CuDNN 7.6.5[^1]。 #### 安装过程概述 对于希望手动控制安装流程的情况,建议遵循官方指导来准备必要的组件: - **NVIDIA 驱动**: 确认已经安装了至少 410.x 或更新版本的驱动程序以支持所选用的 CUDA 版本- **CUDA 工具链**: 下载并安装适用于目标平台的 CUDA 10.0 工具包。 - **cuDNN 库**: 获取并与上述工具集相匹配的 cuDNN SDK (7.4.1+) 文件,并将其路径添加到系统的环境变量中[^3]。 完成这些前置条件之后,可以通过如下方式利用 Anaconda 来简化 TensorFlow 的部署: ```bash conda create --name tf_env python=3.7 conda activate tf_env pip install tensorflow-gpu==1.14.0 ``` 这段脚本创建了一个新的虚拟环境 (`tf_env`) 并激活之;接着指定了 Python 解释器的具体版本号以便更好地适配软件需求;最后一步则是实际执行 TensorFlow GPU 加速版 v1.14.0 的 pip 安装指令[^2]。 #### 使用文档链接 更多详细的安装指南高级特性介绍可以参阅以下资源: - [TensorFlow Official Documentation](https://www.tensorflow.org/install/gpu) #### 常见问题解决方案 如果遇到任何困难或疑问,下面列举了一些可能有助于解决问题的方向: - 如果发现无法识别 GPU 设备,则需核查 NVIDIA 显卡驱动是否正确无误地被加载; - 对于性能优化方面的需求,考虑引入 TensorRT 插件作为辅助手段之一; - 当面对复杂的网络结构训练任务时,尝试调整 batch size 参数大小或是启用 XLA 编译技术提升效率[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值