I. 引言
A. 研究动机将机器人融入日常生活需要它们能够在复杂的环境中交互操作。机器人在实现技能性且高效的物体处理时,面临多自由度和精确控制的挑战,以适应各种物体和任务需求。专为特定任务设计夹持器较为简单,但开发通用型操控器则复杂得多。虽然类人手的仿生设计是常见思路,但它未必是最优解。例如,单自由度的起重机式夹持器能更高效地抓取大件或重物。本研究挑战了“类人抓取是唯一可行方法”的传统理念,提出一种结合工业夹持器强力抓取与仿生设计灵巧操作的混合方案。B. 相关研究人类手部具有21个自由度(不包括手腕),其中拇指就有5个自由度,使其能够弯曲掌心抓取大物体。然而,将这种复杂性移植到机器人手中常导致结构复杂且易损坏。工业夹持器通常分为两类:1)用于简单拾取和放置操作的工业夹持器;2)用于复杂手内操作的高灵巧机器人手。前者(如 Robotiq 2F-85)多采用对指设计以优化抓力,适合简单任务,但适应性有限。后者(如 Shadow Dexterous Hand 和 Schunk SVH 手)模仿人类手的生理结构,具有多自由度和高灵巧性,但复杂性和高成本限制了其可及性。介于两者之间的努力包括软体机器人夹持器(适配性强但缺乏灵活性和抓力)以及成本优化的设计(如 Carnegie Mellon 的 LEAP 手和 Allegro 手)。尽管这些设计在适应性与控制性上达成一定平衡,但仍面临灵活性挑战。应用方面,人工手主要分布在义肢与康复、工业应用、人机交互三大领域。尽管义肢与康复领域占主导地位,但工业与人机交互应用正迅速崛起。因此,设计一种既能满足工业需求,又能与人类自然交互的混合型手具有重要意义。C. 研究贡献本研究通过混合设计,结合工业夹持器的经济性与复杂系统的功能多样性,填补了仿生手与工业夹持器之间的空白。它不仅适用于简单的拾取任务,还能执行复杂的手内操作。与任务定制的模块化设计不同,本研究提出了一种通用解决方案,其创新的旋转拇指机制在广泛任务中保持灵活性与适应性。本研究的贡献包括:•设计了一种具有旋转拇指的机器人手,将仿生手与工业夹持器的优点结合;•采用中空滚动接触关节以简化关节运动学;•利用 YCB 数据集中的测试物品,对系统进行了展示与评估。II. 设计Rotograb 旨在融合人类手部的灵活性与工业夹持器的高效性。为此,Rotograb 设计了五根手指,以模仿并实现人类手的灵活性。所有手指采用相同的设计,以简化建模和制造。食指、中指、无名指和小指固定在手掌上,而拇指可以围绕手掌旋转,切换不同的配置:右手、左手或对掌位置。这种设计使手能够在“灵活抓取”和“强力抓取”模式之间切换。该手具有11个自由度(DoF),分布为每根手指两个自由度和旋转板一个自由度。手部以相对于水平腕平面倾斜10°的角度安装,包含11个伺服驱动器。图2展示了Rotograb的详细信息及其CAD模型。
图2: Rotograb 的 CAD 模型与其实物的对比。(a) Rotograb 的 CAD 模型,包含五根手指,包括旋转拇指和位于手腕下方的驱动塔,内有电机和线轴。(b) 已组装的3D打印版 Rotograb,配有硅胶垫,以增强接触摩擦力。A. 手指所有手指具有相同的设计,每根手指由四部分组成:基座、下节、中节和指尖(如图4)。这些部分通过三个滚动接触关节连接。每个关节由上下对称的四条韧带连接,以保证沿侧平面的灵活性。滚动接触关节能够最小化摩擦并提供一定的侧向柔性。当受到过大压力时,这些关节会弹出而不会断裂。然而,这种设计的代价是降低了控制精度。图5详细展示了腱的路径布置。
图4: 机械手指的统一设计与功能,包括指根、三个链接段、滚动接触关节和关节切口。(a) 手指的侧视图,以拇指为例。所有手指的设计均相同。手指由指根和三个链接段(下段、中段和指尖)组成。各段通过滚动接触关节连接,并通过肌腱驱动。机械限位器限制其运动范围。(b) 滚动接触关节的特写图,展示了肌腱和韧带。滚动接触关节中心的切口简化了手指的运动学设计。从二维侧视角来看,每个手指部分由一个矩形和两个半圆组成,半圆具有相同的半径。滚动接触关节的运动是基于两个独立轴的等量旋转。以图6中基座和下节的旋转为例,“虚拟”旋转指的是围绕O1点的轴旋转,而“真实”旋转发生在O1’点的轴上。两接触面由相同半径的圆柱体构成,保证了O1与O1’两点的旋转幅度相等。
图6: 手指运动学的二维模型,分别展示了下部和上部结构。(a) 第1关节的模型,包含屈肌腱(红色)和伸肌腱(蓝色)。(b) 第2和第3关节的模型,包含组合的屈肌腱(红色)、伸肌腱(蓝色)以及联动屈肌腱(绿色)。手指基座以45°角固定在手掌或旋转板上。关节1允许手指向后旋转至-45°(平坦位置),关节2和关节3只能向内弯曲,最大弯曲角度为90°。机械限位器限制了活动范围。滚动接触关节的腱长度计算较为复杂,因为腱施加力的接触点会随角度变化。为简化问题,设计中在每个手指节的内部切出了一部分。这种切口简化了控制和运动学,对强度的影响较小(见第III节)。切口设计如图3所示,关节1的腱通过切口直接作用于圆直径的端点,切口避免了腱沿圆弧曲线移动。
图3: 普通滚动接触关节 (a) 与带有切口的改进型滚动接触关节 (b) 的对比。在普通滚动接触关节中,肌腱在驱动手指时绕过关节,从而增加了肌腱长度。而在改进型滚动接触关节中,这些关键的非线性因素(黄色圆圈)被绕开。每根手指的指尖包裹着硅胶,这种设计增加了摩擦系数以更容易抓取物体,同时提供更柔软的触感以处理精密物体。B. 旋转拇指拇指与其他手指的设计相同,安装在旋转板上。旋转板通过一个销轴与轴承连接到手掌中心,以最小化摩擦。拇指在初始位置与其他手指方向相反。旋转板由两条腱控制,分别作用于左右两侧,可在-65°至+65°范围内旋转。拇指的腱布置在旋转板的内部,尽量靠近旋转轴以减少旋转角度对腱长度的影响,从而实现拇指弯曲和板旋转的分离控制。C. 手腕手以相对于手腕轴正交平面倾斜10°的角度安装。这一选择使手能够从上方抓取物体并在有限空间中操作,类似鹰爪的功能。该设计最大限度减少了施加在手腕上的扭矩,因为大部分重力沿着手腕轴线分布。D. 驱动与腱路径每根腱通过卷轴与伺服电机连接,并从手腕内部延伸到手指内部。在手指内部,腱路径模仿人类腱的布置,分为两条屈肌腱和两条伸肌腱(如图5.a)。腱的接触点始终位于每个手指节圆直径的端点。腱通过手指关节的切口路径布置,切口设计保证了两个相邻关节旋转中心之间的距离恒定(如图6.a中的O1O1’段)。
图5: 手指内部屈肌腱和伸肌腱路径的详细表示,展示了两个关节的联动运动,以说明手指关节运动的复杂力学。(a) 手指内部肌腱路径的 CAD 侧视图,包含三个关节。屈肌腱以红色表示,伸肌腱以蓝色表示,绿色肌腱用于联动第2和第3关节的屈曲。(b) 手指关节角度的示意图,其中第2和第3关节为联动结构。每根手指由两台电机驱动。一台控制关节1,另一台同时控制耦合的关节2和关节3。每台电机连接两个卷轴,分别控制屈肌腱和伸肌腱。关节2和3的伸肌腱组合为一根腱,这一设计使得单根伸肌腱的长度变化为关节2对应屈肌腱的两倍。E. 材料与成本Rotograb 的总材料成本约为1100欧元,其中最大部分为11个伺服驱动器,其余费用包括控制与供电单元、腱材料、硅胶、轴承、螺丝和螺栓。核心结构(手掌、手腕和手指)采用3D打印材料,便于快速和低成本地实现设计更改,非常适合原型设计。此外,用于控制的摄像头起始价格为316欧元。关键硬件组件的详细成本如表I所示。手腕和手的总高度为27.5厘米,手指和拇指长度为9.6厘米,手掌宽度为9.4厘米,手的总长度(从手掌到指尖)为17.9厘米。这些尺寸与普通男性手部的尺寸相当,便于模拟人类物体交互。表I: 项目中使用的组件清单III. 运动学手部通过位于手腕上的11个伺服电机完全由腱驱动。为简化运动学计算,我们采取了三个设计策略:1.去除手指节内部结构:屈肌腱和伸肌腱路径通过滚动接触关节的中心布置。这种设计将不同关节的弯曲解耦。例如,下关节(如关节1)的弯曲不会影响上关节(如关节2)的腱驱动。因此,我们只需计算驱动关节的偏转,绕过腱弯曲的非线性问题。2.拇指腱的路径布置:拇指的腱通过旋转板的旋转中心布置。这使得旋转板的运动不会影响拇指屈肌腱或伸肌腱的长度。3.选择合适的卷轴半径:在设计时考虑腱长度增加或减少的变化,以优化驱动效果。A. 手指每根手指有两个驱动自由度,几何结构和腱路径布置相同。我们简化为二维问题来计算手指的运动学,该计算适用于所有手指。为了驱动机器人手,目标关节角度 θ 必须转化为腱长度的变化 ∆l。将其除以卷轴半径即可得到实现目标关节角所需的电机旋转角度。由于通过手掌和手指节内部切口的腱长度保持不变,仅相邻关节之间的腱长度会发生变化,记为。手指运动学的方程从分析关节1开始,如图6(a)所示。点 和 分别是虚拟旋转和实际旋转的中心。这两点之间的距离因设计特性始终保持不变。点 和 分别是腱的出口点和入口点。在计算中,我们仅考虑这两点之间的长度变化。腱长度矢量 的计算可以简化为以下方程式:(具体方程部分可进一步补充或基于图6提供计算细节)腱长度的最终变化\Delta l(\theta_1) 可以通过以下公式计算: 是关节 1 的目标角度, 是校准角度。在关节 1 的情况下,。为了移动手指,腱长度的变化会加到伸肌腱的长度中,并从屈肌腱的长度中减去。由于设计选择,关节 2 的计算方法与关节 1 的计算方法类似。如图 6.b 所示,对于关节 2,我们使用参考系 A,并应用相同的计算方法,得到腱长度向量及其长度变化,该变化取决于目标关节角度和关节 2 的校准角度。关节 3 的弯曲或伸展与关节 2 同步进行,因为两者的运动通过耦合机构直接连接在一起。B. 旋转拇指旋转拇指的肌腱长度计算也可以简化为二维问题,如图7所示。
图7: 旋转拇指的二维模型。然后,通过以下公式计算肌腱长度的变化:拇指的肌腱布线经过掌板的旋转轴,其设计旨在解耦掌部铰链关节与拇指的屈伸运动。因此,拇指肌腱的计算可以类似于其他手指的计算(参见第III.A节)。IV. 控制A. 远程操作Rotograb 可通过远程操作进行控制。用户手部的动作作为输入,并映射到机械手上。我们使用 OAK-D Pro 深度摄像头(Luxonis公司,美国科罗拉多州利特尔顿)捕捉人类用户的动作。摄像头追踪用户的手部,并通过 Google Mediapipe 手部追踪模型提取关键点 [15]。人手的输入角度被映射到机械手的每个驱动关节。对于食指、中指、无名指和小指,映射是直接完成的;而对于拇指,则检测用户是否为左手或右手,并据此切换机械手的模式。所有角度均经过缩放和调试,以确保机械手在其整个工作空间内(特别是旋转拇指的工作空间)运行平稳。B. 用于手内物体旋转的强化学习我们实现了一个强化学习流程,用于自主旋转手中的物体。我们参考了 Toshimitsu 等人的类似流程 [17],并使用 rl games [19] 提供的邻近策略优化(PPO)算法 [18]。训练内容包括在掌心将球体沿两个相反方向滚动,并对机械手与其他物体的适应性进行了测试。借助基于 GPU 的 IsaacGym 模拟器 [20],我们能够并行模拟数千个机器人。在一块 NVIDIA GeForce RTX 3060 GPU 上,所有灵巧操作策略的学习仅耗时约 40 分钟。每次训练包括 2000 个训练周期,并涉及 4096 个同时运行的环境。在 Isaac Gym 中的动作空间由关节角速度组成,而模拟中的观测值包括关节的实际角度和角速度,以及被操控物体的位置、方向、速度和角速度。针对球体旋转的具体奖励基于物体的旋转速度制定:当物体绕 x 轴的绝对旋转速度在 1 到 3 rad/s 之间时,奖励达到最大值;在此范围之外,奖励会线性减少。通过改变奖励公式中 的符号,可以调整旋转方向。为了弥补物理引擎的误差并增强策略的鲁棒性以跨越仿真与现实(sim2real)的差距,我们对物理属性应用了领域随机化。高斯或均匀噪声被加入到观测值、动作、肌腱和关节的阻尼与刚度、关节运动范围、机器人的质量与摩擦系数、物体的质量与尺寸中。由于物理系统中未实现传感器反馈,因此在仿真中记录下策略作为关节角度序列,并以前馈方式在物理系统上执行。可能的改进包括使用摄像头测量球体位置,并在策略执行中引入速度反馈。进一步优化还可包括利用卡尔曼滤波器、IMU 和角度偏转传感器估算关节位置和速度。V. 实验评估A. 工作空间为了量化 Rotograb 在工作空间内到达指尖位置的能力,我们使用运动捕捉系统(Qualisys)分析了指尖运动轨迹。图 8 显示了不同手指在 3D 空间和投影到 x-y 平面内的工作空间。旋转拇指的工作空间比其他手指更大,这表明我们的设计理念能够捕捉从工业抓取器到具有灵巧双手功能的多种状态。同时,我们还发现每根手指捕捉的工作空间相似。为进一步改进,我们将为所有手指添加内收和外展功能,以缩小手指间的工作空间差距。B. 抓取物体为了评估 Rotograb 的抓取能力,我们选择了一组来自 YCB 基准数据集 [14] 的物体进行测试。实验中使用的物体如图 9 所示。结果显示,Rotograb 能够抓取小型、精密的物体(如乒乓球或笔),也能抓取大型物体(如手球或交通锥)。根据物体不同,Rotograb 会在类似人手状态(拇指位于左侧或右侧)与工业抓取器状态(拇指位于中间位置)之间切换。本论文报告的所有抓取任务均通过远程操作完成。C. 双手灵活性为了评估 Rotograb 的双手灵活性能力,我们将一个球分别放置在一个盒子的两个位置:靠近左侧墙壁和靠近右侧墙壁。因此,根据球的位置,盒子的墙壁会限制抓取过程。在这两种位置下,分别测试了拇指位于左侧和右侧的抓取成功率。如图10所示,不同的手模式在不同的球位置上取得了成功。这表明 Rotograb 的设计可以在不同情况下抓取物体。当球位于盒子的左侧墙壁旁时,左手模式尤为有效;而当 Rotograb 的右侧受到墙壁阻碍时,右手模式则派上用场。这表明 Rotograb 在狭小空间内无需改变其安装机械臂的旋转或方向即可抓取物体。D. 手内操作手内重新定向是一项关键能力,使机器人操控器能够在真实场景中执行任务。这需要对设计选择进行精确控制和敏感调整。为展示这一概念,我们进行了两项实验,以突出旋转拇指设计的优势。如图11所示,实验包括绕 x 轴旋转一个网球和绕 z 轴旋转一个魔方。由于形状更简单且更对称,网球允许通过 Isaac Gym 的强化学习自主学习策略。这一策略包括拇指在横向配置和中心配置之间交替。在实际系统中,网球以约5.45转/分钟的速度旋转。对于魔方,策略为硬编码,突出了拇指的关键作用。当其他手指无法进行外展运动时,绕掌心的旋转特别有用。拇指通过推动魔方的边缘进行旋转,而其他手指提供反扭矩,从而完成旋转。在实际硬件上,魔方以约5.62转/分钟的速度旋转。VI. 结论该工作提出了一种新型机械手,称为 Rotograb,它结合了仿人手的优势与工业抓取器的力量。可移动拇指显著增强了抓取大物体时的抓力,同时保持了 Rotograb 在抓取小型和精密物体时的灵巧性。我们引入了一种新型的滚动接触关节,中心带有切口,以简化手指的运动学设计。我们的工作空间分析强调了旋转拇指的潜力。然而,为手指添加内收和外展功能将在未来进一步提升其工作空间。我们通过操控一大批物体(从小型的笔和乒乓球到杯子和电钻)展示了其能力。可移动拇指在执行左手或右手任务时也提供了双手灵活性。我们集成了远程操作控制和强化学习方法。通过后者,Rotograb 可以在手中操控不同的物体,如网球和魔方。下一步,我们希望提高 Rotograb 的鲁棒性,并设计更纤细的手指,同时具备内收和外展功能。此外,我们还将进一步优化控制和远程操作,重点解决用户输入到 Rotograb 的映射问题。由于人手与机械手在形状和尺寸上的差异,映射问题尤为具有挑战性。此外,我们计划进行更多量化的操控实验,以分析和提升 Rotograb 的能力。