人体关节角度的参数化表示
关节角度具有不同的参数化表示, 例如旋转矩阵、欧拉角、四元数和指数映射;
4种参数化的具体形式:
- 旋转矩阵(rotation matrices)
在利用旋转矩阵表示人体关节时,旋转矩阵是一个3*3的的正交矩阵,可以表示为
其中,矩阵共有9个元素,但只与3个独立元素有关。
旋转矩阵的性质:旋转矩阵R的逆是其转置。
若用矩阵的L1范数定义损失函数,可以增强对异常值的鲁棒性,并促进稀疏性。 - 欧拉角(Euler angles)
欧拉角描述了一个旋转序列,即按照顺序分别绕X轴、Y轴和Z轴旋转p、h和r这3个变量所表示的角度。分别绕X轴、Y轴和Z轴旋转p、h和r的旋转矩阵可以表示为:
- 四元数(quaternions):
一个四元数q包含一个标量分量和一个3D向量分量,通常标记分量为w,记向量的分量为v或者分开的x,y,z。
即[w,v]或者[w,x,y,z]
四元数也可以用成绕任意轴n旋转θ角的形式,但是n和θ并不是直接存储在四元数的四个数中,他与上述两个方式存在以下