【基于深度学习的脑电图识别】基于卷积神经网络的脑电图解码及可视化

本文介绍了使用卷积神经网络(CNN)对TUH EEG数据集进行脑电图病理与正常状态识别的研究。作者提出两种架构,深层和浅层CNN,均在病理解码任务中取得超过85%的准确率,优于现有方法。通过自动化超参数优化和结合上下文信息,如年龄,进一步提升了准确性。研究证明,直接使用原始时序数据作为输入并调整池化层位置可以提升模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 论文地址:

https://arxiv.org/abs/1708.08012
发表时间:2017年
被引用量:471
主要贡献:使用了原始数据输入
源码地址:https://github.com/robintibor/auto-eeg-diagnosis-example
(总的来说非常不错)

2. 摘要:

作者在 TUH EEG 数据集应用卷积神经网络来区分病理与正常脑电图记录,即使用两种基本的,浅层的和深层的卷积神经网络架构来解码来自脑电图的任务相关信息,至少是针对这一目的而设计的已建立的算法;

在脑电图病理解码中,两种卷积神经网络的准确率都比该数据集的唯一公布结果高(≈85% vs.≈79%),并且在每次记录 1 分钟进行训练和每次记录 6 秒进行测试时,两种方法的准确率都更好;

并且作者还使用了自动化方法来优化架构超参数,并且对文本医学报告的分析也强调了通过整合上下文信息(如受试者的年龄

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT可达鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值