Feature refinement 的阅读笔记

本文提出了一种新颖的微表情识别方法,通过设计基于Inception的模块提取共享特征,结合注意力机制和专用表达特征学习,有效提升识别效率。该方法包括共享特征学习、专用特征提取和融合三个阶段,并在多个数据集上进行了验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pattern Recognition上一篇微表情识别的文章,记录一下其中的关键信息点。

摘要:

This paper proposes a novel Feature Refinement(FR) with expression-specific feature learning and fusion for micro-expression recognition.

本文的贡献是,提出了一个新颖的特征提纯方法,一个表达能力较强的特征学习与融合的方法,用于微表情识别。

First,an inception module is designed basedon optical flow to obtain expression-shared features.Second,in order to extract salient and discriminative features for specific expression,expression-shared features are fed into an expression proposal module with attention factorsand proposal loss.

先用光流法获取共享的特征,再用注意力机制获取可分类的特征。

一、简介

Automatic micro-expression analysis in-volves micro-expression spotting and micro-expression recognition(MER).

微表情分析分为两大子分支,微表情检测与微表情识别。

However,these existing methods char-acterize the discrimination of micro-expressions inef-ficiently.On the other hand,it is time-consuming to design handcrafted feature[7]and manually adjust theoptimal parameters[8].

现有的特征方法低效,手工设计耗时,且需要手动调参。

The FR consists of three feature refinement stages:expression-shared feat

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pzb19841116

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值