Pattern Recognition上一篇微表情识别的文章,记录一下其中的关键信息点。
摘要:
This paper proposes a novel Feature Refinement(FR) with expression-specific feature learning and fusion for micro-expression recognition.
本文的贡献是,提出了一个新颖的特征提纯方法,一个表达能力较强的特征学习与融合的方法,用于微表情识别。
First,an inception module is designed basedon optical flow to obtain expression-shared features.Second,in order to extract salient and discriminative features for specific expression,expression-shared features are fed into an expression proposal module with attention factorsand proposal loss.
先用光流法获取共享的特征,再用注意力机制获取可分类的特征。
一、简介
Automatic micro-expression analysis in-volves micro-expression spotting and micro-expression recognition(MER).
微表情分析分为两大子分支,微表情检测与微表情识别。
However,these existing methods char-acterize the discrimination of micro-expressions inef-ficiently.On the other hand,it is time-consuming to design handcrafted feature[7]and manually adjust theoptimal parameters[8].
现有的特征方法低效,手工设计耗时,且需要手动调参。
The FR consists of three feature refinement stages:expression-shared feat