【ICCV 2019】特征超分检测:Towards Precise Supervision of Feature Super-Resolution for Small Object Detection

本文针对小目标检测的挑战,提出了一种特征级超分辨率方法,通过高分辨率目标特征的直接监督和感受野匹配,提高了模型性能。通过SR特征生成器、判别器、SR目标提取器和小预测器,实现了基于GAN的特征超分辨率模型,提升了小目标检测的准确性和稳定性。
摘要由CSDN通过智能技术生成

Better to Follow, Follow to Be Better: Towards Precise Supervision of Feature Super-Resolution for Small Object Detection

摘要:

尽管最近基于提案的CNN模型在目标检测方面取得了成功,但由于小的 ROI 区域所包含的信息有限和扭曲,检测小目标仍然很困难。

缓解这一问题的一种方法是使用超分辨率技术来增强小 ROI 的特性,因此作者研究了如何提高特征级超分辨率特别是小对象检测,并发现其性能可以显著提高。

为了丰富小建议中的信息,之前的一些研究利用了图像超分辨率。然而,现有的用于小目标检测的特征级超分辨率模型有一个显著的局限性:缺乏直接的监督。也就是说,他们的超分辨率模型没有训练出明确的目标特征,这导致了训练的不稳定性和限制了超分辨率特征的质量。

因此作者提出了一种新的特征级超分辨率方法,利用适当的高分辨率目标特征作为监督信号训练的SR模型和匹配的相对感受野的训练对输入低分辨率特征和目标高分辨率特性,而且可以与任何基于特征池化的检测器集成。

本文贡献点如下:

  • 对现有的小目标检测的特征级超分辨率方法进行了深入的检查,发现利用高分辨率目标特征作为监督信号,并匹配输入和目标特征的相对感受野,会使模型对小目标的性能显著提高;
  • 提出了一种新的特征级超分辨率方法,该方法适用于任何基于 RPN 的具有特征池化的检测器。它充分利用了创建的高分辨率目标特征的直接监督,并基于快速卷积不需要额外的参数,因为它与基础探测器的CNN主干共享参数。此外&
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT可达鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值