数据驱动(data-driven)和大数据(big data)虽然都涉及数据的使用,但是它们的概念和应用场景有所不同。
数据驱动:
数据驱动指的是在决策和行动过程中,数据扮演着决策支持和行动指南的作用。它是一种管理哲学和方法论,侧重于通过对数据的分析和利用,实现业务目标。
通常,数据驱动的先决条件是要定义明确的业务目标、关键绩效指标以及数据来源,再根据收集到的数据进行分析和优化。因此,数据驱动更加注重精细化的数据分析和使用,运用适当的数据来迭代和优化产品和服务。
例如,在电商行业中,数据驱动可以通过用户点击率和转化率等指标来分析购买者的行为,并据此采取促销活动和个性化推荐等措施,以提高用户的满意度和购买转化率。
大数据:
大数据是一个广义的概念,是指海量、高速、多样化的结构化和非结构化数据集合。这些数据量翻倍的增长曾经影响各种行业和领域。
这些数据通常来自于日志记录、传感器、社交媒体,网页浏览记录等,并且需要使用不同的技术和手段进行保存、管理、处理和分析。 大数据技术主要以hadoop(一种分布式计算框架)为核心,在此基础上引入了spark、hive、pig等关键技术。
大数据提供了在传统数据管理系统和处理方法无法满足的情况下发现和利用数据价