【Python代码学习】对原始数据进行处理和分割

这是 data_pre 函数的详细解释:

def data_pre(Ori_data_path, save_path, save_name):
    # 从指定路径加载原始数据文件
    data = np.loadtxt(Ori_data_path)

    # 从原始数据中提取部分数据
    # 从索引3700000开始,取连续的300*2048个数据点
    f = data[3700000:3700000 + 300 * 2048:1, 1]

    # 重新形状数据
    # 将这些数据重新排列为一个矩阵,其中每行包含2048个数据点
    f = f.reshape(300, -1)

    # 创建一个Pandas DataFrame
    # 将重新排列的数据存储到一个Pandas DataFrame中
    save = pd.DataFrame(f)

    # 保存数据为CSV文件
    # 使用 Pandas 的 to_csv 方法将数据保存为CSV文件
    # 设置参数 index=False 和 header=False,以不保存行索引和列名
    save.to_csv(os.path.join(save_path, save_name + '.csv'), index=False, header=False)

这个函数执行以下操作:

  1. 从指定路径 Ori_data_path 加载原始数据文件,数据被存储在名为 data 的NumPy数组中。
  2. data 数组中,通过索引操作 data[3700000:3700000 + 300 * 2048:1, 1],提取了一部分数据,包括连续的300 * 2048 个数据点。
  3. 然后,使用 reshape 函数将这些数据重新排列为一个矩阵,其中每行包含2048个数据点。
  4. 接下来,创建一个 Pandas DataFrame,将重新排列的数据存储在其中。
  5. 最后,使用 Pandas 的 to_csv 方法将数据保存为CSV文件,文件名由 save_name 参数指定,保存到指定的目录 save_path 中。设置参数 index=Falseheader=False,以不保存行索引和列名到CSV文件。

这个函数的目的是将原始数据进行处理和分割,最终以CSV文件的形式保存,以供后续分析或使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王摇摆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值