这是 data_pre
函数的详细解释:
def data_pre(Ori_data_path, save_path, save_name):
# 从指定路径加载原始数据文件
data = np.loadtxt(Ori_data_path)
# 从原始数据中提取部分数据
# 从索引3700000开始,取连续的300*2048个数据点
f = data[3700000:3700000 + 300 * 2048:1, 1]
# 重新形状数据
# 将这些数据重新排列为一个矩阵,其中每行包含2048个数据点
f = f.reshape(300, -1)
# 创建一个Pandas DataFrame
# 将重新排列的数据存储到一个Pandas DataFrame中
save = pd.DataFrame(f)
# 保存数据为CSV文件
# 使用 Pandas 的 to_csv 方法将数据保存为CSV文件
# 设置参数 index=False 和 header=False,以不保存行索引和列名
save.to_csv(os.path.join(save_path, save_name + '.csv'), index=False, header=False)
这个函数执行以下操作:
- 从指定路径
Ori_data_path
加载原始数据文件,数据被存储在名为data
的NumPy数组中。 - 从
data
数组中,通过索引操作data[3700000:3700000 + 300 * 2048:1, 1]
,提取了一部分数据,包括连续的300 * 2048 个数据点。 - 然后,使用
reshape
函数将这些数据重新排列为一个矩阵,其中每行包含2048个数据点。 - 接下来,创建一个 Pandas DataFrame,将重新排列的数据存储在其中。
- 最后,使用 Pandas 的
to_csv
方法将数据保存为CSV文件,文件名由save_name
参数指定,保存到指定的目录save_path
中。设置参数index=False
和header=False
,以不保存行索引和列名到CSV文件。
这个函数的目的是将原始数据进行处理和分割,最终以CSV文件的形式保存,以供后续分析或使用。