机器学习之加州房价预测(一)

本文介绍了如何运用机器学习预测加州房价,包括问题定义、任务类型、评价指标的选择。文中详细阐述了配置Windows环境,使用Anaconda与Jupyter Notebook的过程,并对数据下载、数据处理进行了说明,特别是数据的描述性统计分析,揭示了数据集中数值特征的分布情况和缺失值问题。
摘要由CSDN通过智能技术生成

#加州房价预测实例#
任务:
基于加州房价数据集建立一个预测模型,使之可以在给定的条件下,预测加州任何地点的房价的中位数。
在这里插入图片描述
一、定义问题
1.公司要如何利用我的模型?
模型的输出将作为另一个机器学习算法的输入,该算法在综合考虑其他因素之后,决定是否值得在该区域投资。
2. 目前是否有可行的解决方案?
目前该区域的房价信息由一个专家团队完成,他们建立了非常复杂的模型。不仅费时费力,而且他们的评估泵不够准确,差错率达到15%。

二、将工程问题归纳为机器学习的问题
有监督学习任务,因为数据样本包含标签。
回归任务,因为你要预测一个价格。这是一个多变量回归任务,你要基于多个特征变量预测价格。
批量学习任务,因为并没有连续数据流输入系统。

三、选择评价指标
回归任务通常采用平方根均方误差(RMSE)作为评价指标,他衡量了系统预测差错的标准差。
???(?,ℎ)=√(1/? ∑_(?=1)?▒〖(ℎ(?((?) ))−?^((?) ) )^2 〗 )
如果有很多街区数据有异常,肯恒需要使用平均绝对误差(MAE)
???(?,ℎ)=1/? ∑_(?=1)?▒〖|ℎ(?((?) ))−?^((?) ) )|〗

四、windows环境配置和软件安装

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值