yolov5 的 detect 层 与 anchor 机制

本文详细介绍了Yolov5s模型中detect层的工作原理,包括detect函数的输入、输出以及参数设置。重点讲解了anchor在不同特征图上的应用,以及如何根据yaml配置文件初始化anchors。此外,还探讨了autoanchor功能,即利用聚类算法自动生成适应数据集的anchors,并说明了如何在训练中启用或禁用此功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

yolov5s.yaml 文件

以yolov5s.yaml 为例
其中有设置好的anchor
在这里插入图片描述
每一行代表在某一层的anchor. 一行的三组数字分别代表三个anchor的宽和高 基准 
且小anchor 是在大特征图上,大anchor是在小特征图上。以输入图片大小640*640为例:
最终提取三个特征图大小分别为 80 X 80 , 40 X 40, 20X20
那么 [10, 13, 16,30, 33,23] 将应用在80 X 80 的特征图上
[30,61, 62,45, 59,119] 应用在 40 X40 的特征图上
[116,90, 156,198, 373,326] 在 20 X 20 的特征图上
在这里插入图片描述

Detect 函数

定义在yolo.Detect里面

class Detect(nn.Module):
    stride = None  # strides computed during build
    onnx_dynamic = False  # ONNX export parameter

    def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
        super().__init__()
        self.nc = nc  # number of classes
        self.no = nc + 5  # number of outputs per anchor
        self.nl = len(anchors)  # number of detection layers
        self.na = len(anchors[0]) // 2  # number of anchors
        self.grid = [torch.zeros(1)] * self.nl  # init grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
        self.inplace = inplace  # use in-place ops (e.g. slice assignment)

    def forward(self, x):
        z = []  # inference output
        for
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值