Yolov5代码详解——detect.py

首先执行扩展包的导入:

import argparse
import os
import platform
import sys
from pathlib import Path
​
import torch
​
FILE = Path(__file__).resolve()     #获取detect.py在电脑中的绝对路径
ROOT = FILE.parents[0]  # 获取detect.py的父目录(绝对路径)
if str(ROOT) not in sys.path:       # 判断detect.py的父目录是否存在于模块的查询路径列表
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # 将绝对路径转换为相对路径from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
                           increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, smart_inference_mode

包导入完成之后,执行最下面的这段代码:

if __name__ == '__main__':
    opt = parse_opt()       #解析参数
    main(opt)
    
#这段代码用到了parse_opt()这个函数,它的功能主要是解析参数,主要参数解析如下:

"""
--weights:权重的路径地址
--source:测试数据,可以是图片/视频路径,也可以是'0'(电脑自带摄像头),也可以是rtsp等视频流
--output:网络预测之后的图片/视频的保存路径
--img-size:网络输入图片大小
--conf-thres:置信度阈值
--iou-thres:做nms的iou阈值
--device:是用GPU还是CPU做推理
--view-img:是否展示预测之后的图片/视频,默认False
--save-txt:是否将预测的框坐标以txt文件形式保存,默认False
--classes:设置只保留某一部分类别,形如0或者0 2 3
--agnostic-nms:进行nms是否也去除不同类别之间的框,默认False
--augment:推理的时候进行多尺度,翻转等操作(TTA)推理
--update:如果为True,则对所有模型进行strip_optimizer操作,去除pt文件中的优化器等信息,默认为False
--project:推理的结果保存在runs/detect目录下
--name:结果保存的文件夹名称
"""
该部分来源于博主“炮哥带你学”——‘目标检测---教你利用yolov5训练自己的目标检测模型’一文,
原文地址:https://blog.csdn.net/didiaopao/article/details/119954291?spm=1001.2014.3001.5502

在parse_opt()执行完成之后,会将opt传给函数main():

def main(opt):
    check_requirements(exclude=('tensorboard', 'thop'))         #检测中的扩展包是否安装
    run(**vars(opt))

main()函数中调用了函数run(),run()主要代码解析如下:

run()主要分为了六个部分:

1.处理预测路径

#处理预测路径
    source = str(source)    #将路径转为字符串类型(data\\images\\bus.jpg)
    save_img = not nosave and not source.endswith('.txt')  # 保存预测结果
    
    #suffix函数表示文件类型,suffix[1:]表示从.jpg中截取jpg,然后判断jpg是否位于(IMG_FORMATS + VID_FORMATS)中
    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    
    #判断路径是否为网络流的格式(lower()作用是将字母全部转换为小写)
    is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
    
    #判断路径是否为‘0’(如果为‘0’会打开电脑摄像头),是否是.streams文件格式,是否是网络流地址
    webcam = source.isnumeric() or source.endswith('.streams') or (is_url and not is_file)
    screenshot = source.lower().startswith('screen')
    
    if is_url and is_file:
        source = check_file(source)  # download,下载图片或视频

2.新建保存结果的文件夹

 #Directories,新建保存结果的文件夹
    
    #增量式地产生文件夹(exp,exp1,exp2...)
    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    
    #在exp文件夹下新建labels文件夹
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

3.加载模型的权重

#Load model,加载模型的权重
    device = select_device(device)      #选择加载模型的设备
    
    #加载模型并从模型中读取一些信息
    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
    stride, names, pt = model.stride, model.names, model.pt
    
    imgsz = check_img_size(imgsz, s=stride)  # check image size

4.加载待预测的图片

#Dataloader,加载待预测的图片
    bs = 1  # batch_size
    if webcam:          #根据‘处理预测路径’代码部分得webcam一般为false
        view_img = check_imshow(warn=True)
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
        bs = len(dataset)
    elif screenshot:    #根据‘处理预测路径’代码部分得screenshot一般为false
        dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
    else:   #加载图片
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
    vid_path, vid_writer = [None] * bs, [None] * bs

5.执行模型的推理过程

#Run inference,执行模型的推理过程#warmup初始化一张空白图片并传入到模型当中,让模型执行一次前向传播
    model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz))  # warmup
    
    seen, windows, dt = 0, [], (Profile(), Profile(), Profile())    #定义变量存储中间结果信息
    
    #path:路径    im:处理后的图片   im0s:原图     vid_cap:none    s:图片的打印信息
    for path, im, im0s, vid_cap, s in dataset:
        with dt[0]:
            im = torch.from_numpy(im).to(model.device)  #将im转化为pytorch支持的格式并放到设备中
            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
            im /= 255  # 0 - 255 to 0.0 - 1.0   #归一化
            if len(im.shape) == 3:
                im = im[None]  # expand for batch dim# Inference,对上面整理好的图片进行预测
        with dt[1]:
            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
            pred = model(im, augment=augment, visualize=visualize)# NMS,进行非极大值过滤
        with dt[2]:
            pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)# Second-stage classifier (optional)
        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)# Process predictions
        for i, det in enumerate(pred):  # 遍历每张图片
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f'{i}: '
            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
​
            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
            s += '%gx%g ' % im.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  #获取原图宽和高
            imc = im0.copy() if save_crop else im0  #判断是否将检测框部分裁剪下来
            annotator = Annotator(im0, line_width=line_thickness, example=str(names))   #定义绘图工具
            if len(det):
                #坐标映射,方便在原图上画检测框
                det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()# 遍历det
                for c in det[:, 5].unique():
                    n = (det[:, 5] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string# 是否保存预测结果
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # 保存为txt
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                        with open(f'{txt_path}.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')if save_img or save_crop or view_img:  # 只在图片上添加检测框
                        c = int(cls)  # integer class
                        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
                        annotator.box_label(xyxy, label, color=colors(c, True))
                    if save_crop:   #是否保存截下来的目标框
                        save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)# Stream results
            im0 = annotator.result()
            if view_img:
                if platform.system() == 'Linux' and p not in windows:
                    windows.append(p)
                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond# Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                    vid_writer[i].write(im0)# Print time (inference-only)
        LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")

6.打印输出信息

#Print results,打印输出信息
    t = tuple(x.t / seen * 1E3 for x in dt)  # 统计每张图片的平均时间
    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights[0])  # update model (to fix SourceChangeWarning)
  • 3
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: YOLOv5 中的 detect.py 文件是用来进行目标检测的主要脚本。它包含了对输入图片/视频进行预处理、模型预测、后处理等一系列操作。其中包含了许多函数,可以帮助我们更好的理解 YOLOv5 的工作原理和实现。 ### 回答2: Yolov5detect.pyYOLO中最为重要的文件之一,是实现目标检测的主要文件。这个文件的代码详解包括以下几个方面。 1.导入必要模块和包: detect.py首先要导入必要模块和包,例如PyTorch中的一些工具包、一些模型(如yolov5)、数据增强、摄像头、命令行参数等等。这个步骤是整个代码的必要内容,以保证下面的代码可以正常运行。 2.加载模型并设置设备: 在detect.py文件中,我们需要通过调用指定的模型(如yolov5s、yolov5m、yolov5l和yolov5x)以及相关的预训练权重来进行目标检测。在完成模型加载后,我们需要根据运行环境设置设备,例如,如果有可用GPU,我们可以将模型放到GPU中来进行运算。 3.载入图片或视频: 在进行目标检测时,我们需要载入待处理的图片或视频文件。通过调用OpenCV的相关功能,我们可以从本地文件或网络直播摄像机中读取视频,而从本地文件夹中读取图片。 4.预处理: 预处理是在将图片或视频传输到模型中进行处理之前进行的。在yolov5 detect.py文件中,主要进行以下预处理: (1)调整大小:将图片或视频帧调整至模型所要求的大小。 (2)转化色彩空间:将彩色图片转化为灰度图片或者RGB色空间。 (3)标准化像素值:调整图片或视频帧的像素值范围。 (4)转置和转换格式:对于输入数据,需要将其转置并以适当的格式进行存储。 5.执行推理(inference): 在推理过程中,将预处理后的数据输入到模型中,得到模型的输出(包括检测框、类别、置信度等信息)。这里是整个代码的核心部分,包括前向传播的计算和预测输出的后处理过程。其中,NMS(non-max suppression)是非常关键的一步,因为它能有效减少多余的检测框,精简输出结果。 6.后处理: 预测结果需要进行一些后处理,包括: (1)将检测框转换为像素坐标。 (2)根据置信度和IoU(Intersection over Union)过滤检测框。 (3)在图片或帧上绘制检测框、标签和置信度等信息。 (4)最后,将处理后的图片或视频帧输出到指定位置。 综上所述,yolov5 detect.py文件是实现目标检测的核心文件,通过对文件每一部分的详解,可以更好地理解代码的含义和作用。 ### 回答3: YOLOv5是目前最优秀的目标检测网络之一。在它的代码中,detect.py文件是用来实现检测过程的。下面我们来详细分析一下该文件的代码。 首先,我们需要导入一些必要的库,这些库包括以及它们所提供的模块,如torch、models、utils、general等。然后,我们需要加载一些模型配置文件和权重文件,它们通常是在训练过程中生成的。我们可以从命令行参数中读取这些文件的路径和一些其他的参数信息,比如输入图片的分辨率、置信度阈值和NMS的参数等等。 然后,我们要加载模型并设置为评估模式。这里加载模型的方式是通过配置文件中指定的模型类型和权重文件的路径来进行加载。在模型加载完成后,我们要为检测结果生成一个输出文件的路径和名称。在检测结果输出文件中,每一行的格式是“image_path confidence x_min y_min x_max y_max label”。 接下来,我们要遍历输入图片的路径集合,对于每张输入图片,我们要先对其进行预处理。这个预处理过程包括将图片转换为模型需要的数据格式、将数据放入GPU中进行推理等。然后,我们要对图像进行前向传递,并根据置信度阈值和NMS的参数,筛选出置信度较高的目标框物体。最后,我们将结果写入输出文件,以供后续的处理和分析。 总的来说,detect.py文件主要是用于对输入的图片进行目标检测,它将加载预训练模型和配置文件,并将检测结果写入输出文件。它还提供了一些可配置的参数,比如置信度阈值和NMS的参数,这些参数可以帮助我们调整模型的检测效果和性能。整个检测过程需要先对输入图片进行预处理,然后进行前向传递和筛选,并将最终结果写入输出文件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值